RESUMEN
When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.
Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Regulación Fúngica de la Expresión Génica , Transporte de ARN , ARN sin Sentido , ARN Bicatenario , ARN Mensajero , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , ARN sin Sentido/metabolismo , ARN sin Sentido/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Telomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est and the Pop proteins. This partly matured telomerase is re-imported into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 leads to the amplification of Y' elements in the terminal chromosome regions and thus elongated telomere ends. Cse1 does not only support TLC1 import, but also the Sm-ring stabilization on the RNA enableling Mtr10 contact and nuclear import. Thus, Sm-ring formation and import factor contact resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the 1158 nucleotides long mature form via the nuclear exosome. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.
Asunto(s)
Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Telomerasa/metabolismo , Transporte Activo de Núcleo Celular , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genéticaRESUMEN
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.