Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Colloid Interface Sci ; 669: 198-210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38713958

RESUMEN

A widespread strategy to increase the transport of therapeutic peptides across cellular membranes has been to attach lipid moieties to the peptide backbone (lipidation) to enhance their intrinsic membrane interaction. Efforts in vitro and in vivo investigating the correlation between lipidation characteristics and peptide membrane translocation efficiency have traditionally relied on end-point read-out assays and trial-and-error-based optimization strategies. Consequently, the molecular details of how therapeutic peptide lipidation affects it's membrane permeation and translocation mechanisms remain unresolved. Here we employed salmon calcitonin as a model therapeutic peptide and synthesized nine double lipidated analogs with varying lipid chain lengths. We used single giant unilamellar vesicle (GUV) calcein influx time-lapse fluorescence microscopy to determine how tuning the lipidation length can lead to an All-or-None GUV filling mechanism, indicative of a peptide mediated pore formation. Finally, we used a GUVs-containing-inner-GUVs assay to demonstrate that only peptide analogs capable of inducing pore formation show efficient membrane translocation. Our data provided the first mechanistic details on how therapeutic peptide lipidation affects their membrane perturbation mechanism and demonstrated that fine-tuning lipidation parameters could induce an intrinsic pore-forming capability. These insights and the microscopy based workflow introduced for investigating structure-function relations could be pivotal for optimizing future peptide design strategies.


Asunto(s)
Calcitonina , Liposomas Unilamelares , Calcitonina/química , Calcitonina/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Animales , Fluoresceínas/química , Membrana Celular/metabolismo , Membrana Celular/química
2.
J Control Release ; 355: 122-134, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724849

RESUMEN

Oral drug delivery increases patient compliance and is thus the preferred administration route for most drugs. However, for biologics the intestinal barrier greatly limits the absorption and reduces their bioavailability. One strategy employed to improve on this is chemical modification of the biologic through the addition of lipid side chains. While it has been established that lipidation of peptides can increase transport, a mechanistic understanding of this effect remains largely unexplored. To pursue this mechanistic understanding, end-point detection of biopharmaceuticals transported through a monolayer of fully polarized epithelial cells is typically used. However, these methods are time-consuming and tedious. Furthermore, most established methods cannot be combined easily with high-resolution live-cell fluorescence imaging that could provide a mechanistic insight into cellular uptake and transport. Here we address this challenge by developing an axial PSF deconvolution scheme to quantify the transport of peptides through a monolayer of Caco-2 cells using single-cell analysis with live-cell confocal fluorescence microscopy. We then measure the known cross-barrier transport of several compounds in our model and compare the results with results obtained in an established microfluidic model finding similar transport phenotypes. This verifies that already after two days the Caco-2 cells in our model form a tight monolayer and constitute a functional barrier model. We then apply this assay to investigate the effects of side chain lipidation of the model peptide drug salmon calcitonin (sCT) modified with 4­carbon and 8­carbon-long fatty acid chains. Furthermore, we compare that with experiments performed at lower temperature and using inhibitors for some endocytotic pathways to pinpoint how lipidation length modifies the main avenues for the transport. We thus show that increasing the length of the lipid chain increases the transport of the drug significantly but also makes endocytosis the primary transport mechanism in a short-term cell culture model.


Asunto(s)
Células Epiteliales , Péptidos , Humanos , Células CACO-2 , Transporte Biológico , Células Epiteliales/metabolismo , Péptidos/farmacología , Ácidos Grasos/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1864(2): 183820, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813768

RESUMEN

Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000-2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Citometría de Flujo/métodos , Fluoresceínas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Liposomas Unilamelares/metabolismo , Fluorescencia
4.
J Med Chem ; 64(13): 8942-8950, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33944562

RESUMEN

Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution. Insulin icodec was selected by screening for long intravenous plasma half-life in dogs while ensuring glucose-lowering potency following subcutaneous administration in rats. The ensuing structure-activity relationship resulted in insulin icodec. In phase-2 clinical trial, once-weekly insulin icodec provided safe and efficacious glycemic control comparable to once-daily insulin glargine in type 2 diabetes patients. The structure-activity relationship study leading to insulin icodec is presented here.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Insulina/farmacología , Animales , Perros , Esquema de Medicación , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Inyecciones Intravenosas , Inyecciones Subcutáneas , Insulina/administración & dosificación , Insulina/análogos & derivados , Masculino , Ratas , Ratas Sprague-Dawley
5.
J Med Chem ; 64(1): 616-628, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356257

RESUMEN

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, 10, in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis. Ultralong pharmacokinetic profiles were obtained by attaching an albumin-binding side chain derived from octadecanedioic (C18) or icosanedioic acid (C20) to the lysine in position B29. Crucial for obtaining the ultralong PK profile was also a significant reduction of insulin receptor affinity. Oral bioavailability in dogs indicated that C18-based analogues were superior to C20-based analogues. These studies led to the identification of the two clinical candidates OI338 and OI320 (10 and 24, respectively).


Asunto(s)
Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Acilación , Administración Oral , Secuencia de Aminoácidos , Animales , Disponibilidad Biológica , Preparaciones de Acción Retardada , Perros , Semivida , Humanos , Hipoglucemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , Ratas
6.
Diabetologia ; 60(8): 1423-1431, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28478482

RESUMEN

AIMS/HYPOTHESIS: Heterozygous mutations in the insulin gene that affect proinsulin biosynthesis and folding are associated with a spectrum of diabetes phenotypes, from permanent neonatal diabetes to MODY. In vivo studies of these mutations may lead to a better understanding of insulin mutation-associated diabetes and point to the best treatment strategy. We studied an 18-year-old woman with MODY heterozygous for the insulin mutation p.R46Q (GlnB22-insulin), measuring the secretion of mutant and wild-type insulin by LC-MS. The clinical study was combined with in vitro studies of the synthesis and secretion of p.R46Q-insulin in rat INS-1 insulinoma cells. METHODS: We performed a standard 75 g OGTT in the 18-year-old woman and measured plasma glucose and serum insulin (wild-type insulin and GlnB22-insulin), C-peptide, proinsulin, glucagon and amylin. The affinity of GlnB22-insulin was tested on human insulin receptors expressed in baby hamster kidney (BHK) cells. We also examined the subcellular localisation, secretion and impact on cellular stress markers of p.R46Q-insulin in INS-1 cells. RESULTS: Plasma GlnB22-insulin concentrations were 1.5 times higher than wild-type insulin at all time points during the OGTT. The insulin-receptor affinity of GlnB22-insulin was 57% of that of wild-type insulin. Expression of p.R46Q-insulin in INS-1 cells was associated with decreased insulin secretion, but not induction of endoplasmic reticulum stress. CONCLUSIONS/INTERPRETATION: The results show that beta cells can process and secrete GlnB22-insulin both in vivo and in vitro. Our combined approach of immunoprecipitation and LC-MS to measure mutant and wild-type insulin may be useful for the study of other mutant insulin proteins. The ability to process and secrete a mutant protein may predict a more benign course of insulin mutation-related diabetes. Diabetes develops when the beta cell is stressed because of increased demand for insulin, as observed in individuals with other insulin mutations that affect the processing of proinsulin to insulin or mutations that reduce the affinity for the insulin receptor.


Asunto(s)
Diabetes Mellitus/genética , Insulina/genética , Adolescente , Animales , Western Blotting , Péptido C/metabolismo , Línea Celular , Cricetinae , Femenino , Glucagón/metabolismo , Humanos , Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proinsulina/metabolismo , Ratas , Receptor de Insulina/metabolismo
7.
Chemistry ; 22(24): 8358-67, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27144376

RESUMEN

Incorporation of silicon-containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of ß-silicon-ß3-amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of ß-silicon-ß3-amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20-fold increase in calcein release as compared with wild-type alamethicin.


Asunto(s)
Alameticina/análogos & derivados , Aminoácidos/química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Silicio/química , Alameticina/síntesis química , Alameticina/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Dicroismo Circular , Liposomas/química , Liposomas/metabolismo , Estructura Secundaria de Proteína , Técnicas de Síntesis en Fase Sólida
8.
J Phys Chem B ; 116(26): 7652-9, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22676384

RESUMEN

Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine the dynamics of assembly and to facilitate a thorough structural evaluation of the alamethicin ion-channels, we have applied click chemistry for the synthesis of templated alamethicin multimers covalently attached to cyclodextrin-scaffolds. Using oriented circular dichroism, calcein release assays, and single-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels.


Asunto(s)
Alameticina/química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ciclodextrinas/química , Farmacorresistencia Bacteriana , Alameticina/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Dicroismo Circular , Ciclodextrinas/farmacología , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Técnicas de Placa-Clamp , Peptaiboles/química , Estructura Secundaria de Proteína
9.
J Pept Sci ; 18(3): 199-207, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22252935

RESUMEN

Benzotriazole-based coupling reagents have dominated the last two decades of solid phase peptide synthesis. However, a growing interest in synthesizing complex peptides has stimulated the search for more efficient and low-cost coupling reagents, such as COMU which has been introduced as a nonexplosive alternative to the classic benzotriazole coupling reagents. Here, we present a comparative study of the coupling efficiency of COMU with the benzotriazole-based HBTU and HCTU for use in in situ neutralization Boc-SPPS. Difficult sequences, such as ACP(65-74), Jung-Redeman 10-mer, and HIV-1 PR(81-99), were used as model target peptides on polystyrene-based resins, as well as polyethylene glycol-based resins. Coupling yields obtained using fast in situ Boc-SPPS cycles were determined with the quantitative ninhydrin test as well as via LC-MS analysis of the crude cleavage products. Our results demonstrate that COMU coupling efficiency was less effective compared to HBTU and HCTU with HCTU ≥ HBTU > COMU, when polystyrene-based resins were employed. However, when the PEG resin was employed in combination with a safety catch amide (SCAL) linker, more comparable yields were observed for the three coupling reagents with the same ranking HCTU ≥ HBTU > COMU.


Asunto(s)
Técnicas de Síntesis en Fase Sólida/métodos , Reactivos de Enlaces Cruzados , Ésteres del Ácido Fórmico , Resinas Sintéticas
10.
Biopolymers ; 98(1): 36-49, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23325558

RESUMEN

The nonproteinogenic, C(α)-tetrasubstituted, helicogenic, chiral α-amino acid isovaline (Iva) is remarkably spread in the biosphere. Together with its achiral, lower homolog α-aminoisobutyric acid (Aib), it represents a characteristic marker of a class of naturally occurring peptide antibiotics, for which the acronym "peptaibiotics" became established. In these peptides, Iva occurs as the (S)-(= L) or the (R)-(= D) enantiomer, but peptide sequences containing both Iva enantiomers are also common. Here, we applied our recently developed (1)H-NMR method, which enables the nondestructive assignment of the configuration of each Iva residue in a peptide of known helical screw sense, to natural and synthetic peptaibiotics. Our method proved to be generally applicable and provided evidence that, in the peptaibiotic bergofungin A, the Iva(12) configuration is (R) and not (S) as reported previously. Moreover, we extended our NMR method by including a (13)C-NMR parameter. A statistical analysis of the preferred main- and side-chain conformations of the Iva residues in peptides, performed based on their published X-ray diffraction structures, allowed us to provide a sound rationale to the NMR criteria exploited to establish the configuration of this amino acid.


Asunto(s)
Péptidos , Difracción de Rayos X , Secuencia de Aminoácidos , Aminoácidos/química , Péptidos/química , Estereoisomerismo
11.
J Org Chem ; 74(3): 1329-32, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19108634

RESUMEN

An automated approach to peptaibols using microwave-assisted solid-phase peptide synthesis is demonstrated with a combination of HBTU and acid fluoride mediated couplings for normal and alpha,alpha-dialkylated amino acids, respectively. The method is utilized for the automated synthesis of several full-length peptaibols, including alamethicin, tylopeptin, ampullosporin, bergofungin, cervinin, trikoningin, trichogin, and peptaibolin, reducing both synthesis time and costs significantly as compared to other approaches. Furthermore, the use of noncommercially available reagents is minimized.


Asunto(s)
Péptidos/síntesis química , Alameticina/síntesis química , Secuencia de Aminoácidos , Aminoácidos/química , Cromatografía Líquida de Alta Presión , Fluorenos/química , Microondas , Datos de Secuencia Molecular , Peptaiboles , Péptidos Cíclicos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA