RESUMEN
Plant-insect trophic systems should be particularly sensitive to processes altering species spatial co-occurrences, as impacts on one level can cascade effectively through the strong trophic reliance to the other level. Here, we predicted the biogeography of Lepidoptera-plant communities under global-change scenarios, exploiting spatially resolved data on 423 Lepidoptera species and their 848 food plants across the German state of Baden-Württemberg (ca. 36,000 km2). We performed simulations of plant extinction and Lepidoptera expansion, and respectively assessed their cascading consequences-namely secondary extinction of Lepidoptera and change in functional distance of plants-on the interaction networks. Importantly, the simulations were spatially explicit, as we accounted for realistic landscape contexts of both processes: Plant extinctions were simulated as "regional" (a species goes extinct in the whole region at once) vs. "isolation-driven" (a species gradually goes extinct from the peripheral or isolated localities according to its real regional distribution); Lepidoptera expansions were simulated with random, northward, and upward directions according to real topography. The consequences were assessed based on empirical community composition and trophic relationships. When evaluated by regional richness, the robustness of Lepidoptera assemblages against secondary extinctions was higher under isolation-driven plant extinctions than regional plant extinction; however, this relationship was reversed when evaluated by averaged local richness. Also, with isolation-driven plant extinctions, Lepidoptera at the central sub-region of Baden-Württemberg appeared to be especially vulnerable. With Lepidoptera expansions, plants' functional distances in local communities dropped, indicating a possible increase of competition among plants, yet to a lesser extent particularly with upward movements. Together, our results suggested that the communities' composition context at the landscape scale (i.e., how communities, with respective species composition, are arranged within the landscape) matters when assessing global-change influences on interaction systems; spatially explicit consideration of such context can reveal localised consequences that are not necessarily captured via a spatially implicit, regional perspective.
RESUMEN
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Modelos Biológicos , Cambio Climático , Ecosistema , AmbienteRESUMEN
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.
Asunto(s)
Efectos Antropogénicos , Ecosistema , Humanos , Biodiversidad , Agua Dulce , Evolución Biológica , Cambio ClimáticoRESUMEN
While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers' diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes.
Asunto(s)
Ecosistema , Cadena Alimentaria , SuizaRESUMEN
Accurate characterisation of ecological communities with respect to their biodiversity and food-web structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems. Here, we assessed biodiversity and food-web characteristics across a 700 km2 riverine network over seasons using environmental DNA. We found contrasting biodiversity patterns between major taxonomic groups. Local richness showed statistically significant, season-dependent increases and decreases towards downstream location within the catchment for fish and bacteria, respectively. Meanwhile, invertebrate richness remained spatially unchanged but varied across seasons. The structure of local food webs, such as link density and nestedness, also varied across space and time. However, these patterns did not necessarily mirror those observed for biodiversity and functional feeding characteristics. Our results suggest that biodiversity patterns and food-web dynamics are not directly scalable to each other even at the same spatial and temporal scales. In order to conserve species diversity as well as the functional trophic integrity of communities, patterns of biodiversity and food-web characteristics must thus be jointly studied.
Asunto(s)
ADN Ambiental , Cadena Alimentaria , Animales , Biodiversidad , ADN Ambiental/genética , Ecosistema , RíosRESUMEN
How species coexistence (mathematical 'feasibility') in food webs emerges from species' trophic interactions remains a long-standing open question. Here we investigate how structure (network topology and body-size structure) and behaviour (foraging strategy and spatial dimensionality of interactions) interactively affect feasibility in food webs. Metabolically-constrained modelling of food-web dynamics based on whole-organism consumption revealed that feasibility is promoted in systems dominated by large-eat-small foraging (consumers eating smaller resources) whenever (1) many top consumers are present, (2) grazing or sit-and-wait foraging strategies are common, and (3) species engage in two-dimensional interactions. Congruently, the first two conditions were associated with dominance of large-eat-small foraging in 74 well-resolved (primarily aquatic) real-world food webs. Our findings provide a new, mechanistic understanding of how behavioural properties can modulate the effects of structural properties on species coexistence in food webs, and suggest that 'being feasible' constrains the spectra of behavioural and structural properties seen in natural food webs.
Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Tamaño Corporal , Modelos BiológicosRESUMEN
The foraging behaviour of species determines their diet and, therefore, also emergent food-web structure. Optimal foraging theory (OFT) has previously been applied to understand the emergence of food-web structure through a consumer-centric consideration of diet choice. However, the resource-centric viewpoint, where species adjust their behaviour to reduce the risk of predation, has not been considered. We develop a mechanistic model that merges metabolic theory with OFT to incorporate the effect of predation risk on diet choice to assemble food webs. This 'predation-risk-compromise' (PR) model better captures the nestedness and modularity of empirical food webs relative to the classical optimal foraging model. Specifically, compared with optimal foraging alone, risk-mitigated foraging leads to more-nested but less-modular webs by broadening the diet of consumers at intermediate trophic levels. Thus, predation risk significantly affects food-web structure by constraining species' ability to forage optimally, and needs to be considered in future work.
Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Dieta , Conducta PredatoriaRESUMEN
A long time ago in a galaxy far, far away, the Sith Lord Karness Muur engineered the rakghoul plague, a disease that transformed infected humans into near-mindless predatory rakghouls. At its peak, the disease infected millions of individuals, giving rise to armies of rakghouls on a number of planets. Whether rakghoul populations have persisted until this day is not known, making a rakghoul invasion on Earth not completely improbable. Further, a strategy for defence against an outbreak of the disease on Earth has not yet been proposed. To fill this glaring gap, we developed the first mathematical model of the population dynamics of humans and rakghouls during a rakghoul plague outbreak. Using New South Wales as a model site, we then obtained ensembles of model predictions for the outcome of the rakghoul plague in two different disease control strategy scenarios (population evacuation and military intervention), and in the absence thereof. Finally, based on these predictions, we propose a set of policy guidelines for successfully controlling and eliminating outbreaks of the rakghoul plague in Australian states.