Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Front Microbiol ; 13: 1063287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726566

RESUMEN

Burkholderia pseudomallei (Bp), causing a highly fatal disease called melioidosis, is a facultative intracellular pathogen that attaches and invades a variety of cell types. We previously identified BP1026B_I0091 as a surface attachment protein (Sap1) and an essential virulence factor, contributing to Bp pathogenesis in vitro and in vivo. The expression of sap1 is regulated at different stages of Bp intracellular lifecycle by unidentified regulator(s). Here, we identified SapR (BP1026B_II1046) as a transcriptional regulator that activates sap1, using a high-throughput transposon mutagenesis screen in combination with Tn-Seq. Consistent with phenotypes of the Δsap1 mutant, the ΔsapR activator mutant exhibited a significant reduction in Bp attachment to the host cell, leading to subsequent decreased intracellular replication. RNA-Seq analysis further revealed that SapR regulates sap1. The regulation of sap1 by SapR was confirmed quantitatively by qRT-PCR, which also validated the RNA-Seq data. SapR globally regulates genes associated with the bacterial membrane in response to diverse environments, and some of the genes regulated by SapR are virulence factors that are required for Bp intracellular infection (e.g., type III and type VI secretion systems). This study has identified the complex SapR regulatory network and its importance as an activator of an essential Sap1 attachment factor.

3.
Sci Rep ; 11(1): 10405, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001967

RESUMEN

Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease endemic to the tropics. Melioidosis manifests in various ways ranging from acute skin lesions to pneumonia and, in rare cases, infection of the central nervous system. Bp is a facultative intracellular pathogen and it can infect various cell types. The Bp intracellular lifecycle has been partially elucidated and is highly complex. Herein, we have identified a transcriptional regulator, BP1026B_II1198, that is differentially expressed as Bp transits through host cells. A deletion mutant of BP1026B_II1198 was attenuated in RAW264.7 cell and BALB/c mouse infection. To further characterize the function of this transcriptional regulator, we endeavored to determine the regulon of BP1026B_II1198. RNA-seq analysis showed the global picture of genes regulated while ChIP-seq analysis identified two specific BP1026B_II1198 binding regions on chromosome II. We investigated the transposon mutants of these genes controlled by BP1026B_II1198 and confirmed that these genes contribute to pathogenesis in RAW264.7 murine macrophage cells. Taken together, the data presented here shed light on the regulon of BP1026B_II1198 and its role during intracellular infection and highlights an integral portion of the highly complex regulation network of Bp during host infection.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia pseudomallei/patogenicidad , Regulación Bacteriana de la Expresión Génica , Melioidosis/microbiología , Proteínas Represoras/genética , Animales , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Secuenciación de Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Células RAW 264.7 , RNA-Seq , Regulón , Proteínas Represoras/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Nat Commun ; 12(1): 1907, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772012

RESUMEN

Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Genes Bacterianos/genética , Factores de Virulencia/genética , Animales , Burkholderia pseudomallei/citología , Burkholderia pseudomallei/patogenicidad , Línea Celular Tumoral , Membrana Celular/microbiología , Citoplasma/microbiología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Análisis de la Célula Individual/métodos , Vacuolas/microbiología , Virulencia/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-30297364

RESUMEN

It is generally believed that the Pseudomonas aeruginosa biofilm matrix itself acts as a molecular sieve or sink that contributes to significant levels of drug resistance, but it is becoming more apparent that multidrug efflux pumps induced during biofilm growth significantly enhance resistance levels. We present here a novel transcriptional regulator, PA3898, which controls biofilm formation and multidrug efflux pumps in P. aeruginosa A mutant of this regulator significantly reduced the ability of P. aeruginosa to produce biofilm in vitro and affected its in vivo fitness and pathogenesis in Drosophila melanogaster and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA3898 modulates essential virulence genes/pathways, including multidrug efflux pumps and phenazine biosynthesis. Chromatin immunoprecipitation sequencing (ChIP-seq) identified its DNA binding sequences and confirmed that PA3898 directly interacts with promoter regions of four genes/operons, two of which are mexAB-oprM and phz2 Coimmunoprecipitation revealed a regulatory partner of PA3898 as PA2100, and both are required for binding to DNA in electrophoretic mobility shift assays. PA3898 and PA2100 were given the names MdrR1 and MdrR2, respectively, as novel repressors of the mexAB-oprM multidrug efflux operon and activators for another multidrug efflux pump, EmrAB. The interaction between MdrR1 and MdrR2 at the promoter regions of their regulons was further characterized via localized surface plasmon resonance and DNA footprinting. These regulators directly repress the mexAB-oprM operon, independent of its well-established MexR regulator. Mutants of mdrR1 and mdrR2 caused increased resistance to multiple antibiotics in P. aeruginosa, validating the significance of these newly discovered regulators.


Asunto(s)
Proteínas Bacterianas/genética , Pseudomonas aeruginosa/fisiología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biopelículas , Drosophila melanogaster , Regulación Bacteriana de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mutación , Fenazinas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
8.
Sci Rep ; 8(1): 12422, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127446

RESUMEN

Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.


Asunto(s)
Burkholderia pseudomallei/genética , Genes Bacterianos/genética , Animales , Aspartato-Semialdehído Deshidrogenasa/genética , Línea Celular , Reparación del ADN/genética , ADN Bacteriano/genética , Técnicas Genéticas , Vectores Genéticos/genética , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
9.
Mol Microbiol ; 109(3): 401-414, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29995308

RESUMEN

Gene regulation network in Pseudomonas aeruginosa is complex. With a relatively large genome (6.2 Mb), there is a significant portion of genes that are proven or predicted to be transcriptional regulators. Many of these regulators have been shown to play important roles in biofilm formation and maintenance. In this study, we present a novel transcriptional regulator, PA1226, which modulates biofilm formation and virulence in P. aeruginosa. Mutation in the gene encoding this regulator abolished the ability of P. aeruginosa to produce biofilms in vitro, without any effect on the planktonic growth. This regulator is also essential for the in vivo fitness and pathogenesis in both Drosophila melanogaster and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA1226 regulates many essential virulence genes/pathways, including those involved in alginate, pili, and LPS biosynthesis. Genes/operons directly regulated by PA1226 and potential binding sequences were identified via ChIP-seq. Attempts to confirm the binding sequences by electrophoretic mobility shift assay led to the discovery of a co-regulator, PA1413, via co-immunoprecipitation assay. PA1226 and PA1413 were shown to bind collaboratively to the promoter regions of their regulons. A model is proposed, summarizing our finding on this novel dual-regulation system.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Perfilación de la Expresión Génica , Humanos , Enfermedades Pulmonares/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/genética , Factores de Transcripción/genética , Virulencia
10.
PLoS One ; 12(12): e0189018, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253888

RESUMEN

Burkholderia spp. are genetically and physiologically diverse. Some strains are naturally transformable and capable of DNA catabolism. Burkholderia pseudomallei (Bp) strains 1026b and K96243 and B. thailandensis strain E264 are able to utilize DNA as a sole carbon source for growth, while only strains 1026b and E264 are naturally transformable. In this study, we constructed low-copy broad-host-range fosmid library, containing Bp strain 1026b chromosomal DNA fragments, and employed a novel positive selection approach to identify genes responsible for DNA uptake and DNA catabolism. The library was transferred to non-competent Bp K96243 and B. cenocepacia (Bc) K56-2, harboring chromosomally-inserted FRT-flanked sacB and pheS counter-selection markers. The library was incubated with DNA encoding Flp recombinase, followed by counter-selection on sucrose and chlorinated phenylalanine, to select for clones that took up flp-DNA, transiently expressed Flp, and excised the sacB-pheS cassette. Putative clones that survived the counter-selection were subsequently incubated with gfp-DNA and bacteria were visualized via fluorescent microscopy to confirm natural competency. Fosmid sequencing identified several 1026b genes implicated in DNA uptake, which were validated using chromosomal mutants. One of the naturally competent clones selected in Bc K56-2 enabled Bc, Bp and B. mallei to utilize DNA as a sole carbon source, and all fosmids were used to successfully create mutations in non-naturally-competent B. mallei and Bp strains.


Asunto(s)
Burkholderia pseudomallei/genética , ADN Bacteriano/metabolismo , Biblioteca de Genes , Genes Bacterianos , Plásmidos/genética , Alelos , Cromosomas Bacterianos/genética , Células Clonales , Reproducibilidad de los Resultados , Especificidad de la Especie , Transformación Genética
11.
Mol Microbiol ; 106(6): 976-985, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29030956

RESUMEN

Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Animales , Proteínas Bacterianas/genética , Drosophila/genética , Ratones , Mutación , Transcriptoma , Factores de Virulencia/genética
12.
Org Lett ; 19(17): 4636-4639, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28832157

RESUMEN

A rhodium-catalyzed cycloisomerization and oxidation of tethered dienynes for the synthesis of indanes is described. An auxiliary fragmentation/olefination method (also described herein) provides novel access to tethered alkyne-dienoate substrates. The reported method circumvents current limitations in and expands the scope of inverse-demand Diels-Alder-type cycloadditions. Traditional discovery substrates involving malonate-, ether-, and sulfonamide-based tethers are problematic in the current methodology, underscoring the unique virtue of neopentylene-tethered substrates for reaction discovery.

13.
Org Lett ; 19(4): 858-861, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28133968

RESUMEN

A total synthesis of the illudalane sesquiterpene illudinine was realized in eight steps and 14% overall yield from commercially available dimedone. The approach features tandem fragmentation/Knoevenagel-type condensation and microwave-assisted oxidative cycloisomerization to establish the isoquinoline core. Completion of the synthesis involves a recently reported cascade SNAr/Lossen rearrangement on a densely functionalized aryl bromide and an optimized procedure for O-methylation of 8-hydroxyisoquinolines. The oxidative cycloisomerization proceeds by way of a novel inverse-demand intramolecular dehydro-Diels-Alder cycloaddition, which has a potentially broader appeal for preparing substituted isoquinolines.

16.
Org Lett ; 18(14): 3470-3, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27359158

RESUMEN

Strategic pairing of ring openings and cycloisomerization provides rapid and efficient "open and shut" entry into sparsely functionalized illudalanes, as exemplified here in the context of a six-step synthesis of alcyopterosin A. Key steps include a tandem ring-opening fragmentation/olefination process for preparing a neopentyl-tethered 1,6-enyne, ring-opening olefination telescoped with alkyne homologation, and Rh-catalyzed oxidative cycloisomerization.

17.
Nat Protoc ; 10(7): 974-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26042386

RESUMEN

Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Células Procariotas/citología , Células Procariotas/metabolismo , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Separación Celular/métodos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Captura por Microdisección con Láser/métodos
18.
Genome Announc ; 3(3)2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26067955

RESUMEN

Burkholderia cepacia strain LO6 is a betaproteobacterium that was isolated from a cystic fibrosis patient. Here we report the 6.4 Mb draft genome sequence assembled into 2 contigs. This genome sequence will aid the transcriptomic profiling of this bacterium and help us to better understand the mechanisms specific to pulmonary infections.

19.
PLoS One ; 9(7): e103778, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068317

RESUMEN

Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient for P. aeruginosa during CF lung infection.


Asunto(s)
Colina/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Fosfatidilcolinas/metabolismo , Pseudomonas aeruginosa/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasa/genética , 3-Hidroxiacil-CoA Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Interacciones Huésped-Patógeno , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutagénesis , Mutación , Operón , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/genética
20.
Org Lett ; 15(15): 4026-9, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23885858

RESUMEN

A tandem process provides high-value 1,6-enynes that are otherwise difficult to prepare. Two base-mediated reactions-fragmentation and olefination-are executed in a coordinated manner that is overall more efficient than either reaction on its own. The 1,6-enynes can be strategically employed in conjunction with carbocyclization to deliver important targets, as noted for reported syntheses of hirsutene and illudol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA