Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
bioRxiv ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39282255

RESUMEN

Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this neuronal constraint? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in the Pristionchus pacificus respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode C. elegans. By visualizing neuronal activity patterns, we show that contrary to previous expectations based on its genome sequence, the salt responses of P. pacificus are encoded in a left/right asymmetric manner in the bilateral ASE neuron pair. Our study illustrates patterns of evolutionary stability and change in the gustatory system of nematodes.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-39132051

RESUMEN

Single molecule fluorescence in situ hybridization (smFISH) and in situ hybridization chain reaction (HCR) have become powerful tools to visualize gene expression in many different animal species. We show here that smFISH and in situ HCR can be put to effective use in the satellite nematode model organism Pristionchus pacificus . Examining the expression of a homeobox gene ( Ppa-unc-30) , we found that HCR is more sensitive than smFISH. We confirmed the robustness of HCR by visualization of the expression of several genes involved in neurotransmitter synthesis or transport ( Ppa-unc-25 /GAD, Ppa-unc-17/VAChT, Ppa-eat-4 /VGLUT). Combined with its relative cost-effectiveness compared to smFISH analysis, in situ HCR constitutes a useful addition to the toolbox for P. pacificus research .

3.
Genetics ; 228(2)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39103170

RESUMEN

One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas Luminiscentes , Proteína Fluorescente Roja , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistemas CRISPR-Cas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Genes Reporteros
4.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071424

RESUMEN

Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.

5.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915494

RESUMEN

One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode C. elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and maturation time of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3 and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the panneuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.

6.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895397

RESUMEN

Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.

7.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766005

RESUMEN

We describe here the molecular mechanisms by which juvenile experience defines patterns of sexually dimorphic synaptic connectivity in the adult nervous system of the nematode C. elegans. We show that starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo. During postembryonic development, FMI-1/Flamingo has the capacity to promote and maintain synaptic connectivity of the PHB nociceptive sensory to a command interneuron, AVA, in both sexes, but the serotonin transcriptional regulatory cassette antagonizes FMI-1/Flamingo expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node in this process is the CREB-target LIN-29, a Zn finger transcription factor which integrates four different layers of information - sexual specificity, past feeding status, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.

9.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38304163

RESUMEN

To facilitate cell identification for expression pattern analysis in C. elegans , an SL2::GFP::H2B fluorescent reporter cassette has become a popular and widely used choice to generate nuclear localized reporter alleles by CRISPR/Cas9 genome engineering. When added at the 3' end of a locus of interest, this cassette concentrates GFP into the nucleus and permits the identification of expressing cells, for example with the help of the NeuroPAL tool. However, there are instances in which it is desirable to visualize the complete morphology of a cell that expresses an SL2::GFP::H2B reporter cassette. We describe here a CRISPR/Cas9-engineering strategy to transform an endogenous SL2::GFP::H2B tag into a cytosolic tag by insertion of the self-cleaving T2A tag in between GFP and H2B.

10.
STAR Protoc ; 5(1): 102901, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377002

RESUMEN

The auxin-inducible degron (AID) system is a broadly used tool for spatiotemporal and reversible control of protein depletion in multiple experimental model systems. AID2 technology relies on a synthetic ligand, 5-phenyl-indole-3-acetic acid (5-Ph-IAA), for improved specificity and efficiency of protein degradation. Here, we provide a protocol for cost-effective 5-Ph-IAA synthesis utilizing the Suzuki coupling of 5-chloroindole and phenylboronic acid. We describe steps for evaluating the quality of lab-synthesized 5-Ph-IAA using a C. elegans AID2 tester strain.


Asunto(s)
Caenorhabditis elegans , Ácidos Indolacéticos , Animales , Caenorhabditis elegans/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas , Proteolisis
11.
Elife ; 122024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224479

RESUMEN

Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.


Asunto(s)
Caenorhabditis elegans , Sinapsis Eléctricas , Humanos , Animales , Animales Modificados Genéticamente , Colorantes , Fluorescencia
12.
Neuron ; 111(22): 3570-3589.e5, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935195

RESUMEN

Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.


Asunto(s)
Conectoma , Animales , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Expresión Génica , Sinapsis
13.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38021170

RESUMEN

Recent single-cell transcriptome analysis has revealed a tremendous breadth and specificity of neuropeptide-encoding gene expression in the nervous system of C. elegans. To analyze the dynamics of neuropeptide gene expression, as well as to dissect the regulatory mechanism by which their expression is controlled, reporter genes remain an important tool. Using CRISPR/Cas9 genome-engineering, we generate here reporter alleles for 6 different neuropeptide encoding genes (3 flp genes, 1 nlp and 2 insulin genes). We find that different reporter cassettes result in different levels of reporter expression and recommend usage of an SL2::GFP::H2B or GFP::H2B::SL2 cassette.

14.
Genetics ; 225(4)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37793339

RESUMEN

Sec1/Munc18 (SM) proteins are important regulators of SNARE complex assembly during exocytosis throughout all major animal tissue types. However, expression of a founding member of the SM family, UNC-18, is mostly restricted to the nervous system of the nematode Caenorhabditis elegans, where it is important for synaptic transmission. Moreover, unc-18 null mutants do not display the lethality phenotype associated with (a) loss of all Drosophila and mouse orthologs of unc-18 and (b) with complete elimination of synaptic transmission in C. elegans. We investigated whether a previously uncharacterized unc-18 paralog, which we named uncp-18, may be able to explain the restricted expression and limited phenotypes of unc-18 null mutants. A reporter allele shows ubiquitous expression of uncp-18. Analysis of uncp-18 null mutants, unc-18 and uncp-18 double null mutants, as well as overexpression of uncp-18 in an unc-18 null mutant background, shows that these 2 genes can functionally compensate for one another and are redundantly required for embryonic viability. Our results indicate that the synaptic transmission defects of unc-18 null mutants cannot necessarily be interpreted as constituting a null phenotype for SM protein function at the synapse.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mutación , Sinapsis/metabolismo , Transmisión Sináptica/genética
15.
Curr Biol ; 33(11): 2315-2320.e2, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37236179

RESUMEN

Axons must project to particular brain regions, contact adjacent neurons, and choose appropriate synaptic targets to form a nervous system. Multiple mechanisms have been proposed to explain synaptic partnership choice. In a "lock-and-key" mechanism, first proposed by Sperry's chemoaffinity model,1 a neuron selectively chooses a synaptic partner among several different, adjacent target cells, based on a specific molecular recognition code.2 Alternatively, Peters' rule posits that neurons indiscriminately form connections with other neuron types in their proximity; hence, neighborhood choice, determined by initial neuronal process outgrowth and position, is the main predictor of connectivity.3,4 However, whether Peters' rule plays an important role in synaptic wiring remains unresolved.5 To assess the nanoscale relationship between neuronal adjacency and connectivity, we evaluate the expansive set of C. elegans connectomes. We find that synaptic specificity can be accurately modeled as a process mediated by a neurite adjacency threshold and brain strata, offering strong support for Peters' rule as an organizational principle of C. elegans brain wiring.


Asunto(s)
Caenorhabditis elegans , Sinapsis , Animales , Caenorhabditis elegans/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Neuritas/fisiología , Encéfalo
16.
Sci Adv ; 9(14): eade1817, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027477

RESUMEN

Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insulina , Animales , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Receptor IGF Tipo 1/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Transducción de Señal/fisiología , Caenorhabditis elegans/metabolismo
17.
Curr Biol ; 33(6): R217-R218, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36977380

RESUMEN

Heterochrony is a foundational concept in animal development and evolution, first introduced by Ernst Haeckel in 1875 and later popularized by Stephen J. Gould1. A molecular understanding of heterochrony was first established by genetic mutant analysis in the nematode C. elegans, revealing a genetic pathway that controls the proper timing of cellular patterning events executed during distinct postembryonic juvenile and adult stages2. This genetic pathway is composed of a complex temporal cascade of multiple regulatory factors, including the first-ever discovered miRNA, lin-4, and its target gene, lin-14, which encodes a nuclear, DNA-binding protein2,3,4. While all core members of the pathway have homologs based on primary sequences in other organisms, homologs for LIN-14 have never been identified by sequence homology. We report that the AlphaFold-predicted structure of the LIN-14 DNA binding domain is homologous to the BEN domain, found in a family of DNA binding proteins previously thought to have no nematode homologs5. We confirmed this prediction through targeted mutations of predicted DNA-contacting residues, which disrupt in vitro DNA binding and in vivo function. Our findings shed new light on potential mechanisms of LIN-14 function and suggest that BEN domain-containing proteins may have a conserved role in developmental timing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Factores de Transcripción , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo
18.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595352

RESUMEN

Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans. To eliminate function of all proneuronal class I/II bHLH complexes, we therefore genetically removed maternal and zygotic hlh-2 gene activity. We observed broad effects on neurogenesis, but still detected normal neurogenesis in many distinct neuron-producing lineages of the central and peripheral nervous system. Moreover, we found that hlh-2 selectively affects some aspects of neuron differentiation while leaving others unaffected. Although our studies confirm the function of proneuronal class I/II bHLH complexes in many different lineages throughout a nervous system, we conclude that their function is not universal, but rather restricted by lineage, cell type and components of differentiation programs affected.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica
20.
Nat Chem Biol ; 19(2): 141-150, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216995

RESUMEN

The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans, serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR-Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N-acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Serotonina , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Conducta Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA