Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Methods Mol Biol ; 2826: 167-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017893

RESUMEN

Division tracking dyes like Cell Trace Violet (CTV) enable the quantification of cell proliferation, division, and survival kinetics of human naïve B cell responses in vitro. Human naïve B cells exhibit distinct responses to different stimuli, with CpG and anti-Ig inducing a T cell-independent (TI) response, while CD40L and IL-21 promote a T cell-dependent (TD) response that induces isotype switching and differentiation into antibody-secreting cells (ASCs). Both stimulation methods yield valuable insights into the intrinsic programming of B cell health within individuals, making them useful for clinical investigations. For instance, quantitative analysis from these B cell populations could reveal biologically meaningful measurements such as the average number of division rounds and the time to cells' fate. Here, we describe a novel in vitro culture setup for CTV-labelled human naïve B cells and a method for obtaining precise time-based data on proliferation, division-linked isotype switching, and differentiation.


Asunto(s)
Linfocitos B , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Humanos , Linfocitos B/citología , Linfocitos B/metabolismo , Técnicas de Cultivo de Célula/métodos , Cinética , Activación de Linfocitos , Células Cultivadas , Cambio de Clase de Inmunoglobulina
2.
Immunol Cell Biol ; 102(1): 46-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840018

RESUMEN

Memory T cells are generated from naïve precursors undergoing proliferation during the initial immune response. Both naïve and memory T cells are maintained in a resting, quiescent state and respond to activation with a controlled proliferative burst and differentiation into effector cells. This similarity in the maintenance and response dynamics points to the preservation of key cellular fate programs; however, whether memory T cells have acquired intrinsic changes in these programs that may contribute to the enhanced immune protection in a recall response is not fully understood. Here we used a quantitative model-based analysis of proliferation and survival kinetics of in vitro-stimulated murine naïve and memory CD8+ T cells in response to homeostatic and activating signals to establish intrinsic similarities or differences within these cell types. We show that resting memory T cells display heightened sensitivity to homeostatic cytokines, responding to interleukin (IL)-2 in addition to IL-7 and IL-15. The proliferative response to αCD3 was equal in size and kinetics, demonstrating that memory T cells undergo the same controlled division burst and automated return to quiescence as naïve T cells. However, perhaps surprisingly, we observed reduced expansion of αCD3-stimulated memory T cells in response to activating signals αCD28 and IL-2 compared with naïve T cells. Overall, we demonstrate that although sensitivities to cytokine and costimulatory signals have shifted, fate programs regulating the scale of the division burst are conserved in memory T cells.


Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Animales , Ratones , Citocinas/metabolismo , División Celular , Diferenciación Celular , Memoria Inmunológica , Activación de Linfocitos
3.
Immunol Cell Biol ; 102(2): 117-130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069638

RESUMEN

Programmed death receptor 1 (PD-1) is an inhibitory receptor on T cells shown to restrain T-cell proliferation. PD-1 immune checkpoint blockade has emerged as a highly promising approach in cancer treatment. Much of our understanding of the function of PD-1 is derived from in vitro T-cell activation assays. Here we set out to further investigate how T cells integrate inhibitory signals such as PD-1 in vitro using the PD-1 agonist, PD-1 ligand 1 (PD-L1) fusion protein (PD-L1.Fc), coimmobilized alongside anti-CD3 agonist monoclonal antibody (mAb) on plates to deliver PD-1 signals to wild-type and PD-1-/- CD8+ T cells. Surprisingly, we found that the PD-L1.Fc fusion protein inhibited T-cell proliferation independently of PD-1. This PD-L1.Fc inhibition was observed in the presence and absence of CD28 and interleukin-2 signaling. Binding of PD-L1.Fc was restricted to PD-1-expressing T cells and thus inhibition was not mediated by the interaction of PD-L1.Fc with CD80 or other yet unknown binding partners. Furthermore, a similar PD-1-independent reduction of T-cell proliferation was observed with plate-bound PD-L2.Fc. Hence, our results suggest that the coimmobilization of PD-1 ligand fusion proteins with anti-CD3 mAb leads to a reduction of T-cell engagement with plate-bound anti-CD3 mAb. This study demonstrates a nonspecific mechanism of T-cell inhibition when PD-L1.Fc or PD-L2.Fc fusion proteins are delivered in a plate-bound coimmobilization assay and highlights the importance of careful optimization of assay systems and reagents when interpreting their influence on T-cell proliferation.


Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Ligandos , Proliferación Celular , Receptores de Muerte Celular/metabolismo
4.
Immunol Cell Biol ; 101(8): 678-683, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610184

RESUMEN

Between 1969 and 1983 the lab of Kevin Lafferty in Canberra developed the concept of the T-cell "costimulator," an essential second signal for activation. A great deal of the work appeared in this journal before it was known as Immunology & Cell Biology (ICB). As part of the 100-year anniversary of the journal, I offer a personal reflection on Kevin's legacy and impact.

5.
Immunity ; 56(7): 1596-1612.e4, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37164016

RESUMEN

Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.


Asunto(s)
Longevidad , Células Plasmáticas , Células Productoras de Anticuerpos
6.
Sci Immunol ; 7(76): eabm8389, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306370

RESUMEN

Vaccines work largely by generating long-lived plasma cells (LLPCs), but knowledge of how such cells are recruited is sparse. Although it is clear that LLPCs preferentially originate in germinal centers (GCs) and relocate to survival niches in bone marrow where they can persist for decades, the issues of the timing of LLPC recruitment and the basis of their retention remain uncertain. Here, using a genetic timestamping system in mice, we show that persistent PCs accrue in bone marrow at an approximately constant rate of one cell per hour over a period spanning several weeks after a single immunization with a model antigen. Affinity-based selection was evident in persisting PCs, reflecting a relative and dynamic rather than absolute affinity threshold as evidenced by the changing pattern of VH gene somatic mutations conveying increased affinity for antigen. We conclude that the life span of persistent, antigen-specific PCs is in part intrinsic, preprogrammed, and varied and that their final number is related to the duration of the response in a predictable way. This implies that modulating vaccines to extend the duration of the GC reaction will enhance antibody-mediated protective immunity.


Asunto(s)
Médula Ósea , Células Plasmáticas , Animales , Ratones , Centro Germinal , Anticuerpos , Inmunidad
7.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108634

RESUMEN

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Recombinación Genética , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/metabolismo
8.
Cell Death Differ ; 29(12): 2519-2530, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35831623

RESUMEN

High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.


Asunto(s)
Linfocitos B , Epigénesis Genética , Animales , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Fenotipo , Complejo Represivo Polycomb 2/metabolismo
9.
Nat Commun ; 12(1): 7160, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887406

RESUMEN

Humoral immune responses require germinal centres (GC) for antibody affinity maturation. Within GC, B cell proliferation and mutation are segregated from affinity-based positive selection in the dark zone (DZ) and light zone (LZ) substructures, respectively. While IL-21 is known to be important in affinity maturation and GC maintenance, here we show it is required for both establishing normal zone representation and preventing the accumulation of cells in the G1 cell cycle stage in the GC LZ. Cell cycle progression of DZ B cells is unaffected by IL-21 availability, as is the zone phenotype of the most highly proliferative GC B cells. Collectively, this study characterises the development of GC zones as a function of time and B cell proliferation and identifies IL-21 as an important regulator of these processes. These data help explain the requirement for IL-21 in normal antibody affinity maturation.


Asunto(s)
Linfocitos B/citología , Linfocitos B/inmunología , Ciclo Celular , Diferenciación Celular , Centro Germinal/inmunología , Animales , Proliferación Celular , Interleucinas/genética , Interleucinas/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Immunity ; 54(6): 1338-1351.e9, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33862015

RESUMEN

Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.


Asunto(s)
Células Dendríticas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Femenino , Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Células Madre/metabolismo
11.
Nat Cell Biol ; 23(3): 219-231, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649477

RESUMEN

Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Proteínas de la Membrana/farmacología , RNA-Seq , Análisis de la Célula Individual , Transcriptoma/efectos de los fármacos , Animales , Linaje de la Célula , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
12.
Nat Commun ; 12(1): 1344, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637722

RESUMEN

During cellular differentiation chromosome conformation is intricately remodelled to support the lineage-specific transcriptional programs required for initiating and maintaining lineage identity. When these changes occur in relation to cell cycle, division and time in response to cellular activation and differentiation signals has yet to be explored, although it has been proposed to occur during DNA synthesis or after mitosis. Here, we elucidate the chromosome conformational changes in B lymphocytes as they differentiate and expand from a naive, quiescent state into antibody secreting plasma cells. We find gene-regulatory chromosome reorganization in late G1 phase before the first division, and that this configuration is remarkably stable as the cells massively and rapidly clonally expand. A second wave of conformational change occurs as cells terminally differentiate into plasma cells, coincident with increased time in G1 phase. These results provide further explanation for how lymphocyte fate is imprinted prior to the first division. They also suggest that chromosome reconfiguration occurs prior to DNA replication and mitosis, and is linked to a gene expression program that controls the differentiation process required for the generation of immunity.


Asunto(s)
Linfocitos B/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Genoma , Activación de Linfocitos/genética , Activación de Linfocitos/fisiología , Animales , Células Productoras de Anticuerpos , Ciclo Celular , División Celular , Cromatina , Cromosomas , Replicación del ADN , Epigenómica , Fase G1/genética , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis , Células Plasmáticas
13.
Front Bioinform ; 1: 723337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303793

RESUMEN

Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam's Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model's consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2's utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.

14.
Cell Rep ; 33(3): 108290, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086063

RESUMEN

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Linfocitos B/metabolismo , Proteína 11 Similar a Bcl2/fisiología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Immunol Cell Biol ; 98(6): 439-448, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32133683

RESUMEN

The protection of a multicellular organism from infection, at both cell and humoral levels, has been a tremendous driver of gene selection and cellular response strategies. Here we focus on a critical event in the development of humoral immunity: The transition from principally innate responses to a system of adaptive cell selection, with all the attendant mechanical problems that must be solved in order for it to work effectively. Here we review recent advances, but our major goal is to highlight that the development of adaptive immunity resulted from the adoption, reuse and repurposing of an ancient, autonomous cellular program that combines and exploits three titratable cellular fate timers. We illustrate how this common cell machinery recurs and appears throughout biology, and has been essential for the evolution of complex organisms, at many levels of scale.


Asunto(s)
Inmunidad Adaptativa , Evolución Biológica , Inmunidad Humoral , Diferenciación Celular , Humanos
16.
J Exp Med ; 216(7): 1682-1699, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31142588

RESUMEN

Interleukin (IL)-17-producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ-producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1-driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17-producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17- T cells and enriched in pathways driven by MAF and RORγt Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Interleucina-17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Animales , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Citometría de Flujo , Factor Nuclear 1-alfa del Hepatocito/fisiología , Humanos , Metabolismo de los Lípidos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subgrupos de Linfocitos T/fisiología
17.
J Leukoc Biol ; 105(6): 1341-1354, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31079418

RESUMEN

NK cells are innate lymphocytes critical for immune surveillance, particularly in eradication of metastatic cancer cells and acute antiviral responses. In contrast to T cells, NK cell-mediated immunity is rapid, with spontaneous cytotoxicity and cytokine/chemokine production upon pathogen detection. The renaissance in cancer immunology has cast NK cell biology back into the spotlight with an urgent need for deeper understanding of the regulatory networks that govern NK cell antitumor activity. To this end, we have adapted and refined a series of quantitative cellular calculus methods, previously applied to T and B lymphocytes, to dissect the biologic outcomes of NK cells following stimulation with cytokines (IL-15, IL-12, IL-18) or deletion of genes that regulate NK cell proliferation (Cish), survival (Bcl2l11), and activation-induced-cell-death (AICD; Fas). Our methodology is well suited to delineate effects on division rate, intrinsic apoptosis, and AICD, permitting variables such as population half-life, rate of cell division, and their combined influence on population numbers in response to stimuli to be accurately measured and modelled. Changes in these variables that result from gene deletion, concentration of stimuli, time, and cell density give insight into the dynamics of NK cell responses and serve as a platform to dissect the mechanism of action of putative checkpoints in NK cell activation and novel NK cell immunotherapy agents.


Asunto(s)
Proliferación Celular , Citocinas/inmunología , Células Asesinas Naturales/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Animales , Proteína 11 Similar a Bcl2/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Citocinas/genética , Eliminación de Gen , Células Asesinas Naturales/citología , Ratones , Ratones Noqueados , Proteínas Supresoras de la Señalización de Citocinas/genética
18.
J Clin Immunol ; 39(3): 324-335, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30927119

RESUMEN

Common variable immunodeficiency is the most prevalent of the primary immunodeficiency diseases, yet its pathogenesis is largely poorly understood. Of the cases that are monogenic, many arise due to pathogenic variants in NFKB1 and NFKB2. Here, we report enteroviral encephalomyelitis as the cause of a fatal neurodegenerative condition in a patient with a novel heterozygous mutation in NFKB2 (c.2543insG, p.P850Sfs36*) that disrupts non-canonical NF-κB signaling. Investigations of primary and secondary lymphoid tissue demonstrated a complete absence of B cells and germinal centers. Despite multiple negative viral PCR testing of cerebrospinal fluid during her disease progression, post-mortem analysis of cerebral tissue revealed a chronic lymphocytic meningoencephalitis, in the presence of Cocksackie A16 virus, as the cause of death. The clinical features, and progression of disease reported here, demonstrate divergent clinical and immunological phenotypes of individuals within a single family. This is the first reported case of fatal enteroviral encephalomyelitis in a patient with NF-κB2 deficiency and mandates a low threshold for early brain biopsy and the administration of increased immunoglobulin replacement in any patient with a defect in this pathway and deterioration of neurological status.


Asunto(s)
Inmunodeficiencia Variable Común/diagnóstico , Encefalomielitis/diagnóstico , Infecciones por Enterovirus/diagnóstico , Enterovirus/fisiología , Subunidad p52 de NF-kappa B/genética , Enfermedades Neurodegenerativas/diagnóstico , Eliminación de Secuencia/genética , Biopsia , Células Cultivadas , Niño , Inmunodeficiencia Variable Común/genética , Encefalomielitis/genética , Infecciones por Enterovirus/genética , Resultado Fatal , Femenino , Humanos , Enfermedades Neurodegenerativas/genética , Linaje
19.
Front Immunol ; 9: 2461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425712

RESUMEN

Understanding how the strength of an effector T cell response is regulated is a fundamental problem in immunology with implications for immunity to pathogens, autoimmunity, and immunotherapy. The initial magnitude of the T cell response is determined by the sum of independent signals from antigen, co-stimulation and cytokines. By applying quantitative methods, the contribution of each signal to the number of divisions T cells undergo (division destiny) can be measured, and the resultant exponential increase in response magnitude accurately calculated. CD4+CD25+Foxp3+ regulatory T cells suppress self-reactive T cell responses and limit pathogen-directed immune responses before bystander damage occurs. Using a quantitative modeling framework to measure T cell signal integration and response, we show that Tregs modulate division destiny, rather than directly increasing the rate of death or delaying interdivision times. The quantitative effect of Tregs could be mimicked by modulating the availability of stimulatory co-stimuli and cytokines or through the addition of inhibitory signals. Thus, our analysis illustrates the primary effect of Tregs on the magnitude of effector T cell responses is mediated by modifying division destiny of responding cell populations.


Asunto(s)
División Celular/inmunología , Citocinas/inmunología , Homeostasis/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
20.
Front Immunol ; 9: 1809, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30177930

RESUMEN

FcγRIIa is an activating FcγR, unique to humans and non-human primates. It induces antibody-dependent proinflammatory responses and exists predominantly as FcγRIIa1. A unique splice variant, we designated FcγRIIa3, has been reported to be associated with anaphylactic reactions to intravenous immunoglobulins (IVIg) therapy. We aim to define the functional consequences of this FcγRIIa variant associated with adverse responses to IVIg therapy and evaluate the frequency of associated SNPs. FcγRIIa forms from macaque and human PBMCs were investigated for IgG-subclass specificity, biochemistry, membrane localization, and functional activity. Disease-associated SNPs were analyzed by sequencing genomic DNA from 224 individuals with immunodeficiency or autoimmune disease. FcγRIIa3 was identified in macaque and human PBMC. The FcγRIIa3 is distinguished from the canonical FcγRIIa1 by a unique 19-amino acid cytoplasmic insertion and these two FcγRIIa forms responded distinctly to antibody ligation. Whereas FcγRIIa1 was rapidly internalized, FcγRIIa3 was retained longer at the membrane, inducing greater calcium mobilization and cell degranulation. Four FCGR2A SNPs were identified including the previously reported intronic SNP associated with anaphylaxis, but in only 1 of 224 individuals. The unique cytoplasmic element of FcγRIIa3 delays internalization and is associated with enhanced cellular activation. The frequency of the immunodeficiency-associated SNP varies between disease populations but interestingly occurred at a lower frequency than previously reported. None-the-less enhanced FcγRIIa3 function may promote a proinflammatory environment and predispose to pathological inflammatory responses.


Asunto(s)
Anafilaxia/genética , Anafilaxia/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anafilaxia/diagnóstico , Anafilaxia/inmunología , Animales , Biomarcadores , Degranulación de la Célula/inmunología , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Expresión Génica , Sitios Genéticos , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Macaca , Mastocitos/inmunología , Mastocitos/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Unión Proteica , Isoformas de Proteínas , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA