Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 100(3-1): 032610, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31639990

RESUMEN

The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future for biomedical and technological applications. These microswimmers move autonomously through aqueous media, where under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic interface that features resistance toward shear and bending. We model the active agent as a superposition of higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending resistance are generally more pronounced than those due to shear resistance. Bending can enhance (suppress) the velocities resulting from higher-order singularities whereas the shear related contribution decreases (increases) the velocities. Most prominently, we find that near an elastic interface of only energetic resistance toward shear deformation, such as that of an elastic capsule designed for drug delivery, a swimming bacterium undergoes rotation of the same sense as observed near a no-slip wall. In contrast to that, near an interface of only energetic resistance toward bending, such as that of a fluid vesicle or liposome, we find a reversed sense of rotation. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active microswimmers near elastic confinements.

2.
Eur Phys J E Soft Matter ; 42(7): 89, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31300927

RESUMEN

An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mobility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity, the membrane of which is endowed with resistance toward shear and bending. In conjunction with the results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104 (2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem is formulated and solved using the classic method of images through expressing the hydrodynamic flow fields as a multipole expansion involving higher-order derivatives of the free-space Green's function. In the quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size. This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility. Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite) mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle, is solely determined by membrane shear properties. Our analytical predictions are favorably compared with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

3.
J Chem Phys ; 150(6): 064906, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30770004

RESUMEN

The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrate through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing us to accurately predict most of our results analytically. This analytical theory helps in identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict the mechanical properties of synthetic minimal membranes.


Asunto(s)
Membrana Celular/metabolismo , Nanopartículas , Membrana Celular/química
4.
J Chem Phys ; 149(14): 144902, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30316257

RESUMEN

Previous particle-based computer simulations have revealed a significantly more pronounced tendency of spontaneous global polar ordering in puller (contractile) microswimmer suspensions than in pusher (extensile) suspensions. We here evaluate a microscopic statistical theory to investigate the emergence of such an order through a linear instability of the disordered state. For this purpose, input concerning the orientation-dependent pair-distribution function is needed, and we discuss the corresponding approaches, particularly a heuristic variant of the Percus test-particle method applied to active systems. Our theory identifies an inherent evolution of polar order in planar systems of puller microswimmers, if mutual alignment due to hydrodynamic interactions overcomes the thermal dealignment by rotational diffusion. In our theory, the cause of orientational ordering can be traced back to the actively induced hydrodynamic rotation-translation coupling between the swimmers. Conversely, disordered pusher suspensions remain linearly stable against homogeneous polar orientational ordering. We expect that our results can be confirmed in experiments on (semi-)dilute active microswimmer suspensions, based, for instance, on biological pusher- and puller-type swimmers.

5.
J Phys Condens Matter ; 30(25): 254004, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29757157

RESUMEN

Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.

6.
J Chem Phys ; 148(13): 134904, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626882

RESUMEN

The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.


Asunto(s)
Modelos Biológicos , Movimiento (Física) , Fenómenos Fisiológicos Bacterianos , Fenómenos Biomecánicos , Hidrodinámica , Viscosidad
7.
J Chem Phys ; 144(17): 174901, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-27155650

RESUMEN

We explore structural and dynamical behavior of concentrated colloidal suspensions made up by C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus on the entanglement process between nearby particles for almost closed C-shapes with a small opening angle. Depending on the opening angle and the particle concentration, there is a percolation transition for the cluster of entangled particles which shows the classical scaling characteristics. In a broad density range below the percolation threshold, we find a stretched exponential function for the dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrheology by dragging a single tagged particle with constant speed through the suspension. We measure the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological theory, the size of the dragged cluster depends on the dragging direction and increases markedly with the dragging speed.

8.
J Chem Phys ; 144(2): 024115, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26772562

RESUMEN

Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 042903, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22181211

RESUMEN

The motility of a microorganism which tries to avoid a poisoned environment by chemotaxis is studied within a simple model which couples its velocity to the concentration field of the poison. The latter is time independent but inhomogeneous in space. The presence of the poison is assumed to irreversibly reduce the propulsion speed. The model is solved analytically for different couplings of the total poison dose experienced by the microbe to the propulsion mechanism. In a stationary poison field resulting from a constant emission of a fixed point source, we find a power law for the distance traveled by the microbe as a function of time with a nonuniversal exponent which depends on the coupling in the model. With an inverted sign in the couplings, the acceleration of microbe motion induced by a food field can also be described.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Modelos Biológicos , Venenos/toxicidad , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA