Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Commun Biol ; 7(1): 1286, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384971

RESUMEN

Bidirectional communication between neurons and glial cells is crucial to establishing and maintaining normal brain function. Some of these interactions are activity-dependent, yet it remains largely unexplored how acute changes in neuronal activity affect glial-to-neuron and neuron-to-glial dynamics. Here, we use excitatory and inhibitory designer receptors exclusively activated by designer drugs (DREADD) to study the effects of acute chemogenetic manipulations of a subpopulation of layer 5 cortical projection and dentate gyrus neurons in adult (Rbp4Cre) mouse brains. We show that acute chemogenetic neuronal activation reduces synaptic density, and increases microglia and astrocyte reactivity, but does not affect parvalbumin (PV+) neurons, only perineuronal nets (PNN). Conversely, acute silencing increases synaptic density and decreases glial reactivity. We show fast glial response upon clozapine-N-oxide (CNO) administration in cortical and subcortical regions. Together, our work provides evidence of fast, activity-dependent, bidirectional interactions between neurons and glial cells.


Asunto(s)
Clozapina , Neuroglía , Neuronas , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neuroglía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Ratones , Clozapina/farmacología , Clozapina/análogos & derivados , Masculino , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Parvalbúminas/metabolismo , Ratones Transgénicos
2.
J Comp Neurol ; 531(17): 1772-1795, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37782702

RESUMEN

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.


Mice are a highly tractable model for studying the claustrum complex (CLCX). However, without a consensus on how to delineate the CLCX in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CLCX, to match the level of detail needed to study its functional properties. To improve and expand upon preexisting delineation schemes, we used the combinatorial expression of several markers to create a comprehensive guide to delineate the CLCX and its subregions, including an online reference atlas. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CLCX.


Asunto(s)
Claustro , Masculino , Femenino , Ratones , Animales , Claustro/metabolismo , Calbindinas/metabolismo , Encéfalo/metabolismo , Parvalbúminas/metabolismo , Roedores/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales
3.
Elife ; 122023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892930

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remote control of targeted cell populations using chemical actuators that bind to modified receptors. Despite the popularity of DREADDs in neuroscience and sleep research, potential effects of the DREADD actuator clozapine-N-oxide (CNO) on sleep have never been systematically tested. Here, we show that intraperitoneal injections of commonly used CNO doses (1, 5, and 10 mg/kg) alter sleep in wild-type male laboratory mice. Using electroencephalography (EEG) and electromyography (EMG) to analyse sleep, we found a dose-dependent suppression of rapid eye movement (REM) sleep, changes in EEG spectral power during non-REM (NREM) sleep, and altered sleep architecture in a pattern previously reported for clozapine. Effects of CNO on sleep could arise from back-metabolism to clozapine or binding to endogenous neurotransmitter receptors. Interestingly, we found that the novel DREADD actuator, compound 21 (C21, 3 mg/kg), similarly modulates sleep despite a lack of back-metabolism to clozapine. Our results demonstrate that both CNO and C21 can modulate sleep of mice not expressing DREADD receptors. This implies that back-metabolism to clozapine is not the sole mechanism underlying side effects of chemogenetic actuators. Therefore, any chemogenetic experiment should include a DREADD-free control group injected with the same CNO, C21, or newly developed actuator. We suggest that electrophysiological sleep assessment could serve as a sensitive tool to test the biological inertness of novel chemogenetic actuators.


Scientists have developed ways to remotely turn on and off populations of neurons in the brain to test the role they play in behaviour. One technique that is frequently used is chemogenetics. In this approach, specific neurons are genetically modified to contain a special 'designer receptor' which switches cells on or off when its corresponding 'designer drug' is present. Recent studies have shown that the drug most commonly used in these experiments, clozapine-N-oxide (CNO), is broken down into small amounts of clozapine, an antipsychotic drug that binds to many natural receptors in the brain and modulates sleep. Nevertheless, CNO is still widely believed to not affect animals' sleep-wake patterns which in turn could influence a range of other brain activities and behaviours. However, there have been reports of animals lacking designer receptors still displaying unusual behaviours when administered CNO. This suggests that the breakdown of CNO to clozapine may cause off-target effects which could be skewing the results of chemogenetic studies. To investigate this possibility, Traut, Mengual et al. treated laboratory mice that do not have a designer receptor with three doses of CNO, and one dose of a new designer drug called compound-21 (C21) that is not broken down to clozapine. They found that high and medium doses of CNO, but also C21 altered the sleep-wake patterns of the mice and their brain activity during sleep. These findings show that CNO and C21 both have sleep-modulating effects on the brain and suggest that these effects are not only due to the production of clozapine, but the drugs binding to off-target natural receptors. To counteract this, Traut, Mengual et al. recommend optimizing the dose of drugs given to mice, and repeating the experiment on a control group which do not have the designer receptor. This will allow researchers to determine which behavioural changes are the result of turning on or off the neuron population of interest, and which are artefacts caused by the drug itself. They also suggest testing how newly developed designer drugs impact sleep before using them in behavioural experiments. Refining chemogenetic studies in these ways may yield more reliable insights about the role specific groups of cells have in the brain.


Asunto(s)
Clozapina , Ratones , Masculino , Animales , Clozapina/farmacología , Imidazoles , Sueño , Óxidos
4.
Cereb Cortex ; 33(7): 3944-3959, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36104852

RESUMEN

The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.


Asunto(s)
Claustro , Ratones , Animales , Ganglios Basales/fisiología , Vías Nerviosas/fisiología , Giro del Cíngulo , Neuronas
5.
J Neurosci ; 42(41): 7757-7781, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096667

RESUMEN

All pathways targeting the thalamus terminate directly onto the thalamic projection cells. As these cells lack local excitatory interconnections, their computations are fundamentally defined by the type and local convergence patterns of the extrinsic inputs. These two key variables, however, remain poorly defined for the "higher-order relay" (HO) nuclei that constitute most of the thalamus in large-brained mammals, including humans. Here, we systematically analyzed the input landscape of a representative HO nucleus of the mouse thalamus, the posterior nucleus (Po). We examined in adult male and female mice the neuropil distribution of terminals immunopositive for markers of excitatory or inhibitory neurotransmission, mapped input sources across the brain and spinal cord and compared the intranuclear distribution and varicosity size of axons originated from each input source. Our findings reveal a complex landscape of partly overlapping input-specific microdomains. Cortical layer (L)5 afferents from somatosensory and motor areas predominate in central and ventral Po but are relatively less abundant in dorsal and lateral portions of the nucleus. Excitatory inputs from the trigeminal complex, dorsal column nuclei (DCN), spinal cord and superior colliculus as well as inhibitory terminals from anterior pretectal nucleus and zona incerta (ZI) are each abundant in specific Po regions and absent from others. Cortical L6 and reticular thalamic nucleus terminals are evenly distributed across Po. Integration of specific input motifs by particular cell subpopulations may be commonplace within HO nuclei and favor the emergence of multiple, functionally diverse input-output subnetworks.SIGNIFICANCE STATEMENT Because thalamic projection neurons lack local interconnections, their output is essentially determined by the kind and convergence of the long-range inputs that they receive. Fragmentary evidence suggests that these parameters may vary within the "higher-order relay" (HO) nuclei that constitute much of the thalamus, but such variation has not been systematically analyzed. Here, we mapped the origin and local convergence of all the extrinsic inputs reaching the posterior nucleus (Po), a typical HO nucleus of the mouse thalamus by combining multiple neuropil labeling and axon tracing methods. We report a complex mosaic of partly overlapping input-specific domains within Po. Integration of different input motifs by specific cell subpopulations in HO nuclei may favor the emergence of multiple, computationally specialized thalamocortical subnetworks.


Asunto(s)
Núcleos Talámicos Posteriores , Tálamo , Humanos , Masculino , Femenino , Ratones , Animales , Vías Nerviosas/fisiología , Tálamo/fisiología , Núcleos Talámicos/fisiología , Colículos Superiores , Mamíferos
6.
Dev Neurobiol ; 82(6): 457-475, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35724379

RESUMEN

Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.


Asunto(s)
Proteínas SNARE , Vesículas Sinápticas , Animales , Ratones , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
7.
J Comp Neurol ; 530(7): 978-997, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35078267

RESUMEN

Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.


Asunto(s)
Cuerpos Geniculados , Corteza Visual , Animales , Cuerpos Geniculados/fisiología , Ratones , Núcleos Talámicos , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología
8.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35029646

RESUMEN

The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Animales , Microscopía Intravital , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/metabolismo , Ratones , Microscopía , Células-Madre Neurales/fisiología , Neurogénesis/fisiología
9.
Nat Neurosci ; 24(9): 1210-1215, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341585

RESUMEN

Cortical and subcortical circuitry are thought to play distinct roles in the generation of sleep oscillations and global state control, respectively. Here we silenced a subset of neocortical layer 5 pyramidal and archicortical dentate gyrus granule cells in male mice by ablating SNAP25. This markedly increased wakefulness and reduced rebound of electroencephalographic slow-wave activity after sleep deprivation, suggesting a role for the cortex in both vigilance state control and sleep homeostasis.


Asunto(s)
Giro Dentado/fisiología , Neocórtex/fisiología , Neuronas/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Masculino , Ratones , Ratones Transgénicos , Proteína 25 Asociada a Sinaptosomas/deficiencia
10.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251335

RESUMEN

Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels, a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then - during the later time window - acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Estimulación Eléctrica/métodos , GABAérgicos/metabolismo , Ratones , Optogenética/métodos , Tálamo/metabolismo , Vibrisas/metabolismo
11.
Cereb Cortex ; 31(5): 2625-2638, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33367517

RESUMEN

Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus.


Asunto(s)
Núcleos Talámicos Posteriores/ultraestructura , Terminales Presinápticos/ultraestructura , Corteza Somatosensorial/ultraestructura , Proteína 25 Asociada a Sinaptosomas/genética , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/ultraestructura , Imagenología Tridimensional , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Vías Nerviosas , Núcleos Talámicos Posteriores/crecimiento & desarrollo , Núcleos Talámicos Posteriores/metabolismo , Terminales Presinápticos/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
12.
J Comp Neurol ; 528(17): 2956-2977, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32266722

RESUMEN

The human claustrum, a major hub of widespread neocortical connections, is a thin, bilateral sheet of gray matter located between the insular cortex and the striatum. The subplate is a largely transient cortical structure that contains some of the earliest generated neurons of the cerebral cortex and has important developmental functions to establish intra- and extracortical connections. In human and macaque some subplate cells undergo regulated cell death, but some remain as interstitial white matter cells. In mouse and rat brains a compact layer is formed, Layer 6b, and it remains underneath the cortex, adjacent to the white matter. Whether Layer 6b in rodents is homologous to primate subplate or interstitial white matter cells is still debated. Gene expression patterns, such as those of Nurr1/Nr4a2, have suggested that the rodent subplate and the persistent subplate cells in Layer 6b and the claustrum might have similar origins. Moreover, the birthdates of the claustrum and Layer 6b are similarly precocious in mice. These observations prompted our speculations on the common developmental and evolutionary origin of the claustrum and the subplate. Here we systematically compare the currently available data on cytoarchitecture, evolutionary origin, gene expression, cell types, birthdates, neurogenesis, lineage and migration, circuit connectivity, and cell death of the neurons that contribute to the claustrum and subplate. Based on their similarities and differences we propose a partially common early evolutionary origin of the cells that become claustrum and subplate, a likely scenario that is shared in these cell populations across all amniotes.


Asunto(s)
Evolución Biológica , Claustro/crecimiento & desarrollo , Neocórtex/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Animales , Claustro/citología , Humanos , Neocórtex/citología , Red Nerviosa/citología
13.
Cereb Cortex ; 30(5): 3296-3312, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31845734

RESUMEN

Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip2+ cortical neurons in Dmrt5-/- mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons. We observed the altered split of preplate and the reduced SP and disturbed radial migration of cortical neurons into cortical plate in Dmrt5-/- brains and demonstrated an increase in the proportion of multipolar cells in primary neuronal cultures from Dmrt5-/- embryonic brains. Dmrt5 affects cortical development with specific time sensitivity that we described in two conditional mice with slightly different deletion time. We only observed a transient SP phenotype at E15.5, but not by E18.5 after early (Dmrt5lox/lox;Emx1Cre), but not late (Dmrt5lox/lox;NestinCre) deletion of Dmrt5. SP was less disturbed in Dmrt5lox/lox;Emx1Cre and Dmrt3-/- brains than in Dmrt5-/- and affects dorsomedial cortex more than lateral and caudal cortex. Our study demonstrates a novel function of Dmrt5 in the regulation of early SP formation and radial cortical neuron migration. SUMMARY STATEMENT: Our study demonstrates a novel function of Dmrt5 in regulating marginal zone and subplate formation and migration of cortical neurons to cortical plate.


Asunto(s)
Movimiento Celular/genética , Neocórtex/embriología , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Proliferación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Embrión de Mamíferos , Ratones , Ratones Noqueados , Mitosis/genética , Neocórtex/citología , Neuronas/citología , Cultivo Primario de Células
14.
J Anat ; 235(3): 432-451, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31373394

RESUMEN

The cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models. The human cerebral cortex has some unique genetic, molecular, cellular and anatomical features, which need to be further explored. The Anatomical Society devoted its summer meeting to the topic of Human Brain Development in June 2018 to tackle these important issues. The meeting was organized by Gavin Clowry (Newcastle University) and Zoltán Molnár (University of Oxford), and held at St John's College, Oxford. The participants provided a broad overview of the structure of the human brain in the context of scaling relationships across the brains of mammals, conserved principles and recent changes in the human lineage. Speakers considered how neuronal progenitors diversified in human to generate an increasing variety of cortical neurons. The formation of the earliest cortical circuits of the earliest generated neurons in the subplate was discussed together with their involvement in neurodevelopmental pathologies. Gene expression networks and susceptibility genes associated to neurodevelopmental diseases were discussed and compared with the networks that can be identified in organoids developed from induced pluripotent stem cells that recapitulate some aspects of in vivo development. New views were discussed on the specification of glutamatergic pyramidal and γ-aminobutyric acid (GABA)ergic interneurons. With the advancement of various in vivo imaging methods, the histopathological observations can be now linked to in vivo normal conditions and to various diseases. Our review gives a general evaluation of the exciting new developments in these areas. The human cortex has a much enlarged association cortex with greater interconnectivity of cortical areas with each other and with an expanded thalamus. The human cortex has relative enlargement of the upper layers, enhanced diversity and function of inhibitory interneurons and a highly expanded transient subplate layer during development. Here we highlight recent studies that address how these differences emerge during development focusing on diverse facets of our evolution.


Asunto(s)
Corteza Cerebral/embriología , Animales , Redes Reguladoras de Genes , Humanos , Interneuronas , Trastornos del Neurodesarrollo/genética , Neurogénesis , Células Piramidales
15.
J Anat ; 235(3): 452-467, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30901089

RESUMEN

Myelination of axons by oligodendrocytes in the central nervous system is crucial for fast, saltatory conduction of action potentials. As myelination is central for brain development and plasticity, and deficits are implicated in several neural disorders such as multiple sclerosis, major depressive disorder, bipolar disorder and schizophrenia, it is important to elucidate the underlying mechanisms regulating myelination. Numerous mechanisms have been proposed by which the communication between oligodendrocytes and active axons may regulate the onset and maintenance of activity-dependent myelination. We compared two models of 'silencing' layer V and/or VI cortical projection neurons from early stages by either decreasing their excitability through Kir2.1 expression, an inward rectifying potassium channel, introduced through in utero electroporation at embryonic day (E)13.5, or inhibiting regulated vesicular release through Cre-dependent knock-out of synaptosomal associated protein 25 kDA (SNAP25). SNAP25 is a component of the soluble N-ethylmaleimide fusion protein attachment protein receptor (SNARE) complex, which, among others, is needed for calcium-dependent regulated vesicle release from synapses. In layer VI cortical projection neurons in the Ntsr1-Cre;Ai14;Snap25 fl/fl mouse, we found that inhibiting regulated vesicular release significantly decreased the amount of myelin basic protein (MBP, used as marker for myelination) and the amount of myelinated projections at postnatal day (P)14 without affecting the initial timing of onset of myelination in the brain (at P7/P8). Additionally, overall oligodendrocyte maturation appears to be affected. A strong trend towards reduced node of Ranvier (NoR) length was also observed in Ntsr1-Cre;Ai14;Snap25 fl/fl corpus callosum. An equally strong trend towards reduced NoR length was observed in Rbp4-Cre;Ai14;Snap25 fl/fl corpus callosum at P14, and the g-ratio in the spinal cord dorsal column was reduced at P18. However, no measurable differences in levels of MBP were detected in the striatum when comparing Rbp4-Cre;Ai14;Snap25 fl/fl and control brains. Conversely, Kir2.1 in utero electroporation at E13.5 did not significantly affect the amount of MBP or number of myelinated callosal axons at P14 but did significantly decrease the NoR length measured in the corpus callosum. It therefore seems likely that the excitability of the neuron can potentially perform a modulating function of myelin characteristics, whereas regulated vesicular release has the potential to have a more pronounced effect on overall myelination, but in a cell-type specific manner.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Vaina de Mielina/metabolismo , Animales , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/ultraestructura , Embarazo
16.
J Anat ; 235(3): 543-554, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30644551

RESUMEN

Neuroserpin is a serine-protease inhibitor mainly expressed in the CNS and involved in the inhibition of the proteolytic cascade. Animal models confirmed its neuroprotective role in perinatal hypoxia-ischaemia and adult stroke. Although neuroserpin may be a potential therapeutic target in the treatment of the aforementioned conditions, there is still no information in the literature on its distribution during human brain development. The present study provides a detailed description of the changing spatiotemporal patterns of neuroserpin focusing on physiological human brain development. Five stages were distinguished within our examined age range which spanned from the 7th gestational week until adulthood. In particular, subplate and deep cortical plate neurons were identified as the main sources of neuroserpin production between the 25th gestational week and the first postnatal month. Our immunohistochemical findings were substantiated by single cell RNA sequencing data showing specific neuronal and glial cell types expressing neuroserpin. The characterization of neuroserpin expression during physiological human brain development is essential for forthcoming studies which will explore its involvement in pathological conditions, such as perinatal hypoxia-ischaemia and adult stroke in human.


Asunto(s)
Encéfalo/embriología , Neuropéptidos/metabolismo , Serpinas/metabolismo , Encéfalo/metabolismo , Humanos , Inmunohistoquímica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Neuroserpina
17.
Cereb Cortex ; 29(5): 2148-2159, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850799

RESUMEN

Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Neuronas/patología , Neuronas/fisiología , Proteína 25 Asociada a Sinaptosomas/fisiología , Animales , Axones/patología , Axones/fisiología , Axones/ultraestructura , Encéfalo/ultraestructura , Femenino , Masculino , Ratones Noqueados , Neuronas/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas
18.
J Comp Neurol ; 527(10): 1610-1620, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520039

RESUMEN

The murine subplate contains some of the earliest generated populations of neurons in the cerebral cortex, which play an important role in the maturation of cortical inhibition. Here we present multiple lines of evidence, that the subplate itself is only very sparsely populated with GABAergic neurons at postnatal day (P)8. We used three different transgenic mouse lines, each of which labels a subset of GABAergic, ganglionic eminence derived neurons. Dlx5/6-eGFP labels the most neurons in cortex (on average 11% of NEUN+ cells across all layers at P8) whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are the sparsest (2% of NEUN+ cells across all layers at P8). There is significant variability in the layer distribution of labeled interneurons, with Dlx5/6-eGFP and Lhx6-Cre::R26R-YFP being expressed most abundantly in Layer 5, whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are least abundant in that layer. All three lines label at most 3% of NEUN+ neurons in the subplate, in contrast to L5, in which up to 30% of neurons are GFP+ in Dlx5/6-eGFP. We assessed all three GABAergic populations for expression of the subplate neuron marker connective tissue growth factor (CTGF). CTGF labels up to two-thirds of NEUN+ cells in the subplate, but was never found to colocalize with labeled GABAergic neurons in any of the three transgenic strains. Despite the GABAergic neuronal population in the subplate being sparse, long-distance axonal connection tracing with carbocyanine dyes revealed that some Gad65-GFP+ subplate cells form long-range axonal projections to the internal capsule or callosum.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Neuronas GABAérgicas/citología , Animales , Ratones , Ratones Transgénicos
19.
Cereb Cortex ; 28(5): 1882-1897, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481606

RESUMEN

The thalamus receives input from 3 distinct cortical layers, but input from only 2 of these has been well characterized. We therefore investigated whether the third input, derived from layer 6b, is more similar to the projections from layer 6a or layer 5. We studied the projections of a restricted population of deep layer 6 cells ("layer 6b cells") taking advantage of the transgenic mouse Tg(Drd1a-cre)FK164Gsat/Mmucd (Drd1a-Cre), that selectively expresses Cre-recombinase in a subpopulation of layer 6b neurons across the entire cortical mantle. At P8, 18% of layer 6b neurons are labeled with Drd1a-Cre::tdTomato in somatosensory cortex (SS), and some co-express known layer 6b markers. Using Cre-dependent viral tracing, we identified topographical projections to higher order thalamic nuclei. VGluT1+ synapses formed by labeled layer 6b projections were found in posterior thalamic nucleus (Po) but not in the (pre)thalamic reticular nucleus (TRN). The lack of TRN collaterals was confirmed with single-cell tracing from SS. Transmission electron microscopy comparison of terminal varicosities from layer 5 and layer 6b axons in Po showed that L6b varicosities are markedly smaller and simpler than the majority from L5. Our results suggest that L6b projections to the thalamus are distinct from both L5 and L6a projections.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/citología , Neuronas/fisiología , Núcleos Talámicos/citología , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Recién Nacidos , Biotina/análogos & derivados , Biotina/metabolismo , Corteza Cerebral/ultraestructura , Dextranos/metabolismo , Embrión de Mamíferos , Proteínas del Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Mutación/genética , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Neuronas/ultraestructura , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Núcleos Talámicos/fisiología , Núcleos Talámicos/ultraestructura , Transducción Genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
20.
J Neurosci ; 37(49): 11912-11929, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29089437

RESUMEN

Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intracortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. We thus explored an alternative hypothesis that these insults alter the maturational trajectory of SPNs. We used DiOlistic labeling to visualize the dendrites of SPNs selectively labeled for complexin-3. SPNs displayed reduced basal dendritic arbor complexity that was accompanied by chronic disturbances in SPN excitability and synaptic activity. SPN dysmaturation was significantly associated with the level of fetal hypoxemia and metabolic stress. Hence, despite the resistance of SPNs to insults that trigger white matter injury, transient hypoxemia disrupted SPN arborization and functional maturation during a critical window in cortical development. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in cerebral growth and maturation related to SPN dysmaturation.SIGNIFICANCE STATEMENT The human preterm brain commonly sustains blood flow and oxygenation disturbances that impair cerebral cortex growth and cause life-long cognitive and learning disabilities. We investigated the fate of subplate neurons (SPNs), which are a master regulator of brain development that plays critical roles in establishing cortical connections to other brain regions. We used a preterm fetal sheep model that reproduces key features of brain injury in human preterm survivors. We analyzed the responses of fetal SPNs to transient disturbances in fetal oxygenation. We discovered that SPNs are surprisingly resistant to cell death from low oxygen states but acquire chronic structural and functional changes that suggest new strategies to prevent learning problems in children and adults that survive preterm birth.


Asunto(s)
Hipoxia/patología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Dendritas/fisiología , Femenino , Hipoxia/complicaciones , Masculino , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ovinos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA