Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Adv ; 8(38): eabo1733, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129981

RESUMEN

Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , Animales , Anopheles/genética , Femenino , Magaininas , Malaria/parasitología , Malaria/prevención & control , Meliteno , Mosquitos Vectores/genética , Plasmodium berghei/genética
2.
Front Bioeng Biotechnol ; 10: 857460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646834

RESUMEN

Gene drives are promising tools for the genetic control of insect vector or pest populations. CRISPR-based gene drives are generally highly complex synthetic constructs consisting of multiple transgenes and their respective regulatory elements. This complicates the generation of new gene drives and the testing of the behavior of their constituent functional modules. Here, we explored the minimal genetic components needed to constitute autonomous gene drives in Drosophila melanogaster. We first designed intronic gRNAs that can be located directly within coding transgene sequences and tested their functions in cell lines. We then integrated a Cas9 open reading frame hosting such an intronic gRNA within the Drosophila rcd-1r locus that drives the expression in the male and female germlines. We showed that upon removal of the fluorescent transformation marker, the rcd-1r d allele supports efficient gene drive. We assessed the propensity of this driver, designed to be neutral with regards to fitness and host gene function, to propagate in caged fly populations. Because of their simplicity, such integral gene drives could enable the modularization of drive and effector functions. We also discussed the possible biosafety implications of minimal and possibly recoded gene drives.

3.
PLoS Genet ; 18(6): e1010244, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653396

RESUMEN

Gene drives for mosquito population modification are novel tools for malaria control. Strategies to safely test antimalarial effectors in the field are required. Here, we modified the Anopheles gambiae zpg locus to host a CRISPR/Cas9 integral gene drive allele (zpgD) and characterized its behaviour and resistance profile. We found that zpgD dominantly sterilizes females but can induce efficient drive at other loci when it itself encounters resistance. We combined zpgD with multiple previously characterized non-autonomous payload drives and found that, as zpgD self-eliminates, it leads to conversion of mosquito cage populations at these loci. Our results demonstrate how self-eliminating drivers could allow safe testing of non-autonomous effector-traits by local population modification. They also suggest that after engendering resistance, gene drives intended for population suppression could nevertheless serve to propagate subsequently released non-autonomous payload genes, allowing modification of vector populations initially targeted for suppression.


Asunto(s)
Anopheles , Antimaláricos , Tecnología de Genética Dirigida , Malaria , Animales , Anopheles/genética , Femenino , Tecnología de Genética Dirigida/métodos , Malaria/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética
4.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33845943

RESUMEN

Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.


Asunto(s)
Anopheles/genética , Control de Enfermedades Transmisibles/métodos , Tecnología de Genética Dirigida/métodos , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Animales
5.
Malar J ; 18(1): 24, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683107

RESUMEN

BACKGROUND: The development of malaria transmission-blocking strategies including the generation of malaria refractory mosquitoes to replace the wild populations through means of gene drives hold great promise. The standard membrane feeding assay (SMFA) that involves mosquito feeding on parasitized blood through an artificial membrane system is a vital tool for evaluating the efficacy of transmission-blocking interventions. However, despite the availability of several published protocols, the SMFA remains highly variable and broadly insensitive. METHODS: The SMFA protocol was optimized through coordinated culturing of Anopheles coluzzii mosquitoes and Plasmodium falciparum parasite coupled with placing mosquitoes under a strict dark regime before, during, and after the gametocyte feed. RESULTS: A detailed description of essential steps is provided toward synchronized generation of highly fit An. coluzzii mosquitoes and P. falciparum gametocytes in preparation for an SMFA. A dark-infection regime that emulates the natural vector-parasite interaction system is described, which results in a significant increase in the infection intensity and prevalence. Using this optimal SMFA pipeline, a series of putative transmission-blocking antimicrobial peptides (AMPs) were screened, confirming that melittin and magainin can interfere with P. falciparum development in the vector. CONCLUSION: A robust SMFA protocol that enhances the evaluation of interventions targeting human malaria transmission in laboratory setting is reported. Melittin and magainin are identified as highly potent antiparasitic AMPs that can be used for the generation of refractory Anopheles gambiae mosquitoes.


Asunto(s)
Anopheles/fisiología , Antimaláricos , Control de Enfermedades Transmisibles/métodos , Ingeniería Genética , Malaria Falciparum/prevención & control , Péptidos/genética , Plasmodium falciparum/fisiología , Animales , Control de Enfermedades Transmisibles/instrumentación , Conducta Alimentaria , Malaria Falciparum/parasitología , Mosquitos Vectores/fisiología
6.
Biol Open ; 8(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30498016

RESUMEN

A first generation of CRISPR-based gene drives has now been tested in the laboratory in a number of organisms, including malaria vector mosquitoes. Challenges for their use in the area-wide genetic control of vector-borne disease have been identified, including the development of target site resistance, their long-term efficacy in the field, their molecular complexity, and practical and legal limitations for field testing of both gene drive and coupled anti-pathogen traits. We have evaluated theoretically the concept of integral gene drive (IGD) as an alternative paradigm for population replacement. IGDs incorporate a minimal set of molecular components, including drive and anti-pathogen effector elements directly embedded within endogenous genes - an arrangement that in theory allows targeting functionally conserved coding sequences without disrupting their function. Autonomous and non-autonomous IGD strains could be generated, optimized, regulated and imported independently. We performed quantitative modeling comparing IGDs with classical replacement drives and show that selection for the function of the hijacked host gene can significantly reduce the establishment of resistant alleles in the population, while drive occurring at multiple genomic loci prolongs the duration of transmission blockage in the face of pre-existing target site variation. IGD thus has potential as a more durable and flexible population replacement strategy.

7.
Cell Rep ; 21(12): 3346-3353, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262315

RESUMEN

During differentiation, neurons require a high lipid supply for membrane formation as they elaborate complex dendritic morphologies. While glia-derived lipids support neuronal growth during development, the importance of cell-autonomous lipid production for dendrite formation has been unclear. Using Drosophila larva dendritic arborization (da) neurons, we show that dendrite expansion relies on cell-autonomous fatty acid production. The nociceptive class four (CIV) da neurons form particularly large space-filling dendrites. We show that dendrite formation in these CIVda neurons additionally requires functional sterol regulatory element binding protein (SREBP), a crucial regulator of fatty acid production. The dendrite simplification in srebp mutant CIVda neurons is accompanied by hypersensitivity of srebp mutant larvae to noxious stimuli. Taken together, our work reveals that cell-autonomous fatty acid production is required for proper dendritic development and establishes the role of SREBP in complex neurons for dendrite elaboration and function.


Asunto(s)
Dendritas/metabolismo , Proyección Neuronal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Dendritas/fisiología , Drosophila , Ácidos Grasos/metabolismo , Nocicepción , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
8.
Dev Biol ; 411(2): 325-338, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26806702

RESUMEN

Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Animales , Perfilación de la Expresión Génica , Genes Reporteros , Ingeniería Genética , Proteínas de Homeodominio/fisiología , Hibridación Fluorescente in Situ , Modelos Teóricos , Mutagénesis , Secuencias Reguladoras de Ácidos Nucleicos
9.
PLoS Comput Biol ; 9(10): e1003281, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204230

RESUMEN

Systems biology proceeds through repeated cycles of experiment and modeling. One way to implement this is reverse engineering, where models are fit to data to infer and analyse regulatory mechanisms. This requires rigorous methods to determine whether model parameters can be properly identified. Applying such methods in a complex biological context remains challenging. We use reverse engineering to study post-transcriptional regulation in pattern formation. As a case study, we analyse expression of the gap genes Krüppel, knirps, and giant in Drosophila melanogaster. We use detailed, quantitative datasets of gap gene mRNA and protein expression to solve and fit a model of post-transcriptional regulation, and establish its structural and practical identifiability. Our results demonstrate that post-transcriptional regulation is not required for patterning in this system, but is necessary for proper control of protein levels. Our work demonstrates that the uniqueness and specificity of a fitted model can be rigorously determined in the context of spatio-temporal pattern formation. This greatly increases the potential of reverse engineering for the study of development and other, similarly complex, biological processes.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ingeniería Genética/métodos , Proteínas Represoras/genética , Biología de Sistemas/métodos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Genéticos , Estabilidad Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA