Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 628(8008): 534-539, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600387

RESUMEN

The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention1-6. The theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization due to time-dependent electric polarization in non-ferromagnetic materials7,8. In simple terms, the coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. Here we provide experimental evidence of room-temperature magnetization in the archetypal paraelectric perovskite SrTiO3 due to this mechanism. We resonantly drive the infrared-active soft phonon mode with an intense circularly polarized terahertz electric field and detect the time-resolved magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab initio calculations using self-consistent phonon theory at a finite temperature9, reproduces qualitatively our experimental observations. A quantitatively correct magnitude was obtained for the effect by also considering the phonon analogue of the reciprocal of the Einstein-de Haas effect, which is also called the Barnett effect, in which the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for the control of magnetism, for example, for ultrafast magnetic switches, by coherently controlling the lattice vibrations with light.

2.
Nat Commun ; 14(1): 2795, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202402

RESUMEN

Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.

3.
Struct Dyn ; 9(2): 024301, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35311000

RESUMEN

We report the observation of photo-induced plasmon-phonon coupled modes in the group IV-VI semiconductor PbTe using ultrafast x-ray diffuse scattering at the Linac Coherent Light Source. We measure the near-zone-center excited-state dispersion of the heavily screened longitudinal optical (LO) phonon branch as extracted from differential changes in x-ray diffuse scattering intensity following above bandgap photoexcitation. We suggest that upon photoexcitation, the LO phonon-plasmon coupled (LOPC) modes themselves become coupled to longitudinal acoustic modes that drive electron band shifts via acoustic deformation potentials and possibly to low-energy single-particle excitations within the plasma and that these couplings give rise to displacement-correlations that oscillate in time with a period given effectively by the heavily screened LOPC frequency.

4.
Phys Rev Lett ; 124(5): 054801, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083908

RESUMEN

We present the first demonstration of THz driven bunch compression and timing stabilization of a relativistic electron beam. Quasi-single-cycle strong field THz radiation is used in a shorted parallel-plate structure to compress a few-fC beam with 2.5 MeV kinetic energy by a factor of 2.7, producing a 39 fs rms bunch length and a reduction in timing jitter by more than a factor of 2 to 31 fs rms. This THz driven technique offers a significant improvement to beam performance for applications like ultrafast electron diffraction, providing a critical step towards unprecedented timing resolution in ultrafast sciences, and other accelerator applications using femtosecond-scale electron beams.

5.
J Synchrotron Radiat ; 27(Pt 4): 890-901, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33565997

RESUMEN

Experiments using a THz pump and an X-ray probe at an X-ray free-electron laser (XFEL) facility like the Linac Coherent Light Source II (LCLS II) require frequency-tunable (3 to 20 THz), narrow bandwidth (∼10%), carrier-envelope-phase-stable THz pulses that produce high fields (>1 MV cm-1) at the repetition rate of the X-rays and are well synchronized with them. In this paper, a two-bunch scheme to generate THz radiation at LCLS II is studied: the first bunch produces THz radiation in an electromagnet wiggler immediately following the LCLS II undulator that produces X-rays from the second bunch. The initial time delay between the two bunches is optimized to compensate for the path difference in THz transport. The two-bunch beam dynamics, the THz wiggler and radiation are described, as well as the transport system bringing the THz pulses from the wiggler to the experimental hall.

6.
Nat Commun ; 10(1): 1756, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988403

RESUMEN

Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 107 A cm-2. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.

7.
Struct Dyn ; 4(5): 054301, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28503632

RESUMEN

We use ultrafast X-ray pulses to characterize the lattice response of SrTiO3 when driven by strong terahertz fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO3. The lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.

8.
Phys Rev Lett ; 117(8): 087205, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27588880

RESUMEN

We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (∼30 fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

9.
Nat Commun ; 7: 12291, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27447688

RESUMEN

The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.

10.
Nat Commun ; 6: 5938, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600823

RESUMEN

Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

11.
Nat Mater ; 13(7): 705-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813422

RESUMEN

Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate superconductor YBa2Cu3O6.5 promotes highly unconventional electronic properties. Below the superconducting transition temperature (Tc = 50 K) inter-bilayer coherence is transiently enhanced at the expense of intra-bilayer coupling. Strikingly, even above Tc a qualitatively similar effect is observed up to room temperature, with transient inter-bilayer coherence emerging from the incoherent ground state and similar transfer of spectral weight from high to low frequency. These observations are compatible with previous reports of an inhomogeneous normal state that retains important properties of a superconductor, in which light may be melting competing orders or dynamically synchronizing the interlayer phase. The transient redistribution of coherence discussed here could lead to new strategies to enhance superconductivity in steady state.

12.
Science ; 343(6177): 1333-6, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24603154

RESUMEN

Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.

13.
Phys Rev Lett ; 108(13): 136801, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22540718

RESUMEN

We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO(3) epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates.

14.
Phys Rev Lett ; 107(17): 175002, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107529

RESUMEN

High harmonic generation (HHG) is a central driver of the rapidly growing field of ultrafast science. We present a novel quasiphase-matching (QPM) concept with a dual-gas multijet target leading, for the first time, to remarkable phase control between multiple HHG sources (>2) within the Rayleigh range. The alternating jet structure with driving and matching zones shows perfect coherent buildup for up to six QPM periods. Although not in the focus of the proof-of-principle studies presented here, we achieved competitive conversion efficiencies already in this early stage of development.

15.
Science ; 331(6014): 189-91, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21233381

RESUMEN

One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.

16.
Neuroscience ; 99(3): 423-31, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11029535

RESUMEN

Mongolian gerbils are genetically predisposed to develop epileptic seizures in limbic structures. A species-specific property of the Mongolian gerbil is the expression of the calcium-binding protein parvalbumin in the perforant path where it is predominantly concentrated in nerve terminals. To test the hypothesis that this atypical expression of parvalbumin is induced by seizure-correlated hyperactivity in the entorhinohippocampal loop, we investigated whether it is dependent on extrinsic afferents to the entorhinal cortex. We cultivated organotypic slice cultures of neonate gerbil entorhinal cortex, isolated from all regions it is normally connected with in vivo. In these cultures, parvalbumin-expressing neurons demonstrated their characteristic features like in vivo. Blockade of spontaneous local activity with the sodium-channel blocker tetrodotoxin, however, considerably reduced the number of parvalbumin-expressing neurons in culture. These results indicate that spontaneous local activity, but not activity mediated by extrinsic afferents, is an essential factor for the expression of parvalbumin in the entorhinal cortex of the Mongolian gerbil.


Asunto(s)
Corteza Entorrinal/fisiología , Parvalbúminas/genética , Vías Aferentes/citología , Vías Aferentes/fisiología , Factores de Edad , Animales , Corteza Entorrinal/química , Corteza Entorrinal/citología , Epilepsia/fisiopatología , Expresión Génica/fisiología , Gerbillinae , Hibridación in Situ , Técnicas de Cultivo de Órganos , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio , Especificidad de la Especie , Tetrodotoxina/farmacología
17.
Cell Tissue Res ; 278(2): 409-13, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8001091

RESUMEN

The glia-derived serine protease inhibitor and neurite outgrowth promoter protease nexin-1 (PN-1) is expressed in Schwann cell precursors and astroblasts during embryogenesis. In the adult nervous system, PN-1 persists in the Schwann cells and olfactory glia only. Light-microscopic immunohistochemistry has revealed the presence of PN-1 in the olfactory mucosa and in the nerve fiber layer of the olfactory bulb. The present electron-microscopic study of the gerbil olfactory bulb confirms the occurrence of PN-1 in ensheathing cells of the olfactory nerve fiber layer, a special type of glia which envelopes olfactory axons. In addition, PN-1 is contained in typical astrocytes of the nerve fiber layer and of the glomerular layer. It is inferred that synthesis of PN-1 in the olfactory bulbs is maintained throughout adulthood because its neurite outgrowth promoting action is required for the continuous renewal of olfactory receptor neurons.


Asunto(s)
Proteínas Portadoras/análisis , Gerbillinae/anatomía & histología , Neuritas/química , Neuroglía/química , Bulbo Olfatorio/química , Bulbo Olfatorio/citología , Precursor de Proteína beta-Amiloide , Animales , Astrocitos/química , Astrocitos/citología , Astrocitos/ultraestructura , Inmunohistoquímica , Masculino , Microscopía Electrónica , Neuroglía/ultraestructura , Bulbo Olfatorio/ultraestructura , Nexinas de Proteasas , Receptores de Superficie Celular , Células de Schwann/química , Células de Schwann/citología , Células de Schwann/ultraestructura , Trombina/antagonistas & inhibidores
18.
Neuroscience ; 49(2): 397-408, 1992 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1436472

RESUMEN

The presence of glia-derived nexin and glia fibrillary acidic protein (GFAP) was investigated in the hippocampus of Mongolian gerbils (Meriones unguiculatus) after transient forebrain ischemia. Bilateral clamping of the common carotid arteries for 7 min resulted in selective degeneration of CA1 pyramidal cells after a delay of three to four days, the so-called delayed neuronal death. Immunoreactivity for glia-derived nexin was found in astrocytes of all CA1 layers and was detectable until day 90 (the longest survival time studied). Astroglial reactivity was demonstrated in parallel by staining for GFAP. The co-localization of glia-derived nexin and GFAP was confirmed by double immunocytochemistry. Ultrastructural studies showed the exclusive presence of glia-derived nexin in astrocytes, in the vicinity of degenerating and preserved neuronal structures. Perivascular glia was intensely stained, but endothelial cells were devoid of immunoreactivity. Glia-derived nexin is a potent protease inhibitor with in vitro neurite-promoting activity. During adulthood, it is mainly present in the olfactory system, where receptor neurons are constantly being replaced. The ability of astrocytes to renew the expression of glia-derived nexin after selective delayed neuronal death and the prolonged presence of the protease inhibitor in a zone where degeneration occurs in the immediate neighborhood of preserved neuronal elements indicate that glia-derived nexin may play a role in structural rearrangements of the central nervous system.


Asunto(s)
Isquemia Encefálica/metabolismo , Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Neuroglía/metabolismo , Inhibidores de Proteasas/metabolismo , Precursor de Proteína beta-Amiloide , Animales , Barrera Hematoencefálica/fisiología , Muerte Celular/fisiología , Gerbillinae , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/anatomía & histología , Histocitoquímica , Masculino , Microscopía Electrónica , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/metabolismo , Nexinas de Proteasas , Receptores de Superficie Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA