Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Rep ; 8(1): 17462, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498224

RESUMEN

Diabetes mellitus is associated with cognitive impairment and various central nervous system pathologies such as stroke, vascular dementia, or Alzheimer's disease. The exact pathophysiology of these conditions is poorly understood. Recent reports suggest that hyperglycemia causes cerebral microcirculation pathology and blood-brain barrier (BBB) dysfunction and leakage. The majority of these reports, however, are based on methods including in vitro BBB modeling or streptozotocin-induced diabetes in rodents, opening questions regarding the translation of the in vitro findings to the in vivo situation, and possible direct effects of streptozotocin on the brain vasculature. Here we used a genetic mouse model of hyperglycemia (Ins2AKITA) to address whether prolonged systemic hyperglycemia induces BBB dysfunction and leakage. We applied a variety of methodologies to carefully evaluate BBB function and cellular integrity in vivo, including the quantification and visualization of specific tracers and evaluation of transcriptional and morphological changes in the BBB and its supporting cellular components. These experiments did neither reveal altered BBB permeability nor morphological changes of the brain vasculature in hyperglycemic mice. We conclude that prolonged hyperglycemia does not lead to BBB dysfunction, and thus the cognitive impairment observed in diabetes may have other causes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Hiperglucemia/metabolismo , Hiperglucemia/patología , Pericitos/metabolismo , Pericitos/patología , Animales , Recuento de Células , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hiperglucemia/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo
2.
PLoS One ; 10(9): e0137949, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26394398

RESUMEN

Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Endotelio Vascular/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Western Blotting , Líquido del Lavado Bronquioalveolar/química , Permeabilidad Capilar/genética , Femenino , Expresión Génica , Homeostasis/genética , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología , Receptores Acoplados a Proteínas G/genética , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Bazo/metabolismo , Bazo/patología
3.
Dev Cell ; 31(6): 707-21, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535917

RESUMEN

Acquisition and maintenance of vascular smooth muscle fate are essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMCs) can result in structural alterations associated with aneurysms and vascular wall calcification. Here we report that maturation of sclerotome-derived vSMCs depends on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time, Notch/Jag1-mediated repression of sclerotome transcription factors Pax1, Scx, and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMCs antagonizes sclerotome and cartilage transcription factors and promotes upregulation of contractile genes. In the absence of the Notch ligand Jag1, vSMCs acquire a chondrocytic transcriptional repertoire that can lead to ossification. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming, and promote vascular wall integrity.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Condrogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Factor de Transcripción SOX9/metabolismo , Transporte Activo de Núcleo Celular , Animales , Cartílago/metabolismo , Linaje de la Célula , Condrocitos/citología , Femenino , Proteína Jagged-1 , Ligandos , Masculino , Ratones , Contracción Muscular , Receptores Notch/metabolismo , Análisis de Secuencia de ARN , Proteínas Serrate-Jagged , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 34(9): 2068-77, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24925974

RESUMEN

OBJECTIVE: Using a multi-tissue, genome-wide gene expression approach, we recently identified a gene module linked to the extent of human atherosclerosis. This atherosclerosis module was enriched with inherited risk for coronary and carotid artery disease (CAD) and overlapped with genes in the transendothelial migration of leukocyte (TEML) pathway. Among the atherosclerosis module genes, the transcription cofactor Lim domain binding 2 (LDB2) was the most connected in a CAD vascular wall regulatory gene network. Here, we used human genomics and atherosclerosis-prone mice to evaluate the possible role of LDB2 in TEML and atherosclerosis. APPROACH AND RESULTS: mRNA profiles generated from blood macrophages in patients with CAD were used to infer transcription factor regulatory gene networks; Ldlr(-/-)Apob(100/100) mice were used to study the effects of Ldb2 deficiency on TEML activity and atherogenesis. LDB2 was the most connected gene in a transcription factor regulatory network inferred from TEML and atherosclerosis module genes in CAD macrophages. In Ldlr(-/-)Apob(100/100) mice, loss of Ldb2 increased atherosclerotic lesion size ≈2-fold and decreased plaque stability. The exacerbated atherosclerosis was caused by increased TEML activity, as demonstrated in air-pouch and retinal vasculature models in vivo, by ex vivo perfusion of primary leukocytes, and by leukocyte migration in vitro. In THP1 cells, migration was increased by overexpression and decreased by small interfering RNA inhibition of LDB2. A functional LDB2 variant (rs10939673) was associated with the risk and extent of CAD across several cohorts. CONCLUSIONS: As a key driver of the TEML pathway in CAD macrophages, LDB2 is a novel candidate to target CAD by inhibiting the overall activity of TEML.


Asunto(s)
Aterosclerosis/fisiopatología , Enfermedades de las Arterias Carótidas/patología , Quimiotaxis de Leucocito/fisiología , Enfermedad de la Arteria Coronaria/patología , Proteínas con Dominio LIM/fisiología , Factores de Transcripción/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Apolipoproteína B-100/genética , Enfermedades de las Arterias Carótidas/genética , Línea Celular Tumoral , Quimiocina CCL2/farmacología , Enfermedad de la Arteria Coronaria/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Macrófagos/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Migración Transendotelial y Transepitelial/genética
5.
Blood ; 122(1): 143-53, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690447

RESUMEN

Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow-derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial-cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1⁺/CD11b⁺ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP⁺ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.


Asunto(s)
Células de la Médula Ósea/fisiología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Paclitaxel/farmacología , Receptor Notch1/fisiología , Animales , Antígenos CD/metabolismo , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Células de la Médula Ósea/citología , Cadherinas/metabolismo , Carcinoma Pulmonar de Lewis/genética , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/fisiología , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Receptor Notch1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Development ; 139(23): 4449-60, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23095891

RESUMEN

The Notch signaling pathway is an important contributor to the development and homeostasis of the cardiovascular system. Not surprisingly, mutations in Notch receptors and ligands have been linked to a variety of hereditary diseases that impact both the heart and the vasculature. In particular, mutations in the gene encoding the human Notch ligand jagged 1 result in a multisystem autosomal dominant disorder called Alagille syndrome, which includes tetralogy of Fallot among its more severe cardiac pathologies. Jagged 1 is expressed throughout the developing embryo, particularly in endothelial cells. Here, we demonstrate that endothelial-specific deletion of Jag1 leads to cardiovascular defects in both embryonic and adult mice that are reminiscent of those in Alagille syndrome. Mutant mice display right ventricular hypertrophy, overriding aorta, ventricular septal defects, coronary vessel abnormalities and valve defects. Examination of mid-gestational embryos revealed that the loss of Jag1, similar to the loss of Notch1, disrupts endothelial-to-mesenchymal transition during endocardial cushion formation. Furthermore, adult mutant mice exhibit cardiac valve calcifications associated with abnormal matrix remodeling and induction of bone morphogenesis. This work shows that the endothelium is responsible for the wide spectrum of cardiac phenotypes displayed in Alagille Syndrome and it demonstrates a crucial role for Jag1 in valve morphogenesis.


Asunto(s)
Síndrome de Alagille/genética , Calcinosis/genética , Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiopatías Congénitas/genética , Enfermedades de las Válvulas Cardíacas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/metabolismo , Anomalías de los Vasos Coronarios/genética , Anomalías de los Vasos Coronarios/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio/citología , Endotelio/metabolismo , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interventricular/genética , Defectos del Tabique Interventricular/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Proteína Jagged-1 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Técnicas de Cultivo de Órganos , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Serrate-Jagged
7.
Dev Cell ; 23(3): 587-99, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975327

RESUMEN

Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Neovascularización Fisiológica , Receptores de Lisoesfingolípidos/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores de Lisoesfingolípidos/deficiencia , Receptores de Esfingosina-1-Fosfato , Pez Cebra
8.
PLoS One ; 7(2): e30562, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363445

RESUMEN

CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor ß (TGFß) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.


Asunto(s)
Membrana Basal/crecimiento & desarrollo , Membrana Basal/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Células Endoteliales/patología , Neovascularización Fisiológica , Pericitos/metabolismo , Pericitos/patología , Animales , Membrana Basal/patología , Membrana Basal/ultraestructura , Vasos Sanguíneos/anomalías , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Adhesión Celular , Comunicación Celular , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Ratones Mutantes , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal
9.
Blood ; 119(9): 2149-58, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22134168

RESUMEN

Vascular development and angiogenesis initially depend on endothelial tip cell invasion, which is followed by a series of maturation steps, including lumen formation and recruitment of perivascular cells. Notch ligands expressed on the endothelium and their cognate receptors expressed on perivascular cells are involved in blood vessel maturation, though little is known regarding the Notch-dependent effectors that facilitate perivascular coverage of nascent vessels. Here, we report that vascular smooth muscle cell (VSMC) recognition of the Notch ligand Jagged1 on endothelial cells leads to expression of integrin αvß3 on VSMCs. Once expressed, integrin αvß3 facilitates VSMC adhesion to VWF in the endothelial basement membrane of developing retinal arteries, leading to vessel maturation. Genetic or pharmacologic disruption of Jagged1, Notch, αvß3, or VWF suppresses VSMC coverage of nascent vessels and arterial maturation during vascular development. Therefore, we define a Notch-mediated interaction between the developing endothelium and VSMCs leading to adhesion of VSMCs to the endothelial basement membrane and arterial maturation.


Asunto(s)
Membrana Basal/metabolismo , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Integrinas/metabolismo , Músculo Liso Vascular/metabolismo , Receptores Notch/metabolismo , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica/genética , Unión Proteica , ARN Mensajero/metabolismo , Receptores Notch/genética , Proteínas Serrate-Jagged , Transducción de Señal/fisiología , Factor de von Willebrand/metabolismo
10.
Development ; 137(23): 4061-72, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21062863

RESUMEN

Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation.


Asunto(s)
Síndrome de Alagille/embriología , Síndrome de Alagille/patología , Conductos Biliares Intrahepáticos/embriología , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Vena Porta/metabolismo , Animales , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Análisis Químico de la Sangre , Agregación Celular , Diferenciación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Eliminación de Gen , Humanos , Proteína Jagged-1 , Hígado/embriología , Hígado/metabolismo , Hígado/patología , Mesodermo/embriología , Mesodermo/patología , Ratones , Morfogénesis , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neovascularización Fisiológica , Fenotipo , Vena Porta/embriología , Vena Porta/patología , Factor de Transcripción SOX9/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal
11.
Blood ; 116(18): 3435-44, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20699440

RESUMEN

The vitelline artery is a temporary structure that undergoes extensive remodeling during midgestation to eventually become the superior mesenteric artery (also called the cranial mesenteric artery, in the mouse). Here we show that, during this remodeling process, large clusters of hematopoietic progenitors emerge via extravascular budding and form structures that resemble previously described mesenteric blood islands. We demonstrate through fate mapping of vascular endothelium that these mesenteric blood islands are derived from the endothelium of the vitelline artery. We further show that the vitelline arterial endothelium and subsequent blood island structures originate from a lateral plate mesodermal population. Lineage tracing of the lateral plate mesoderm demonstrates contribution to all hemogenic vascular beds in the embryo, and eventually, all hematopoietic cells in the adult. The intraembryonic hematopoietic cell clusters contain viable, proliferative cells that exhibit hematopoietic stem cell markers and are able to further differentiate into myeloid and erythroid lineages. Vitelline artery-derived hematopoietic progenitor clusters appear between embryonic day 10 and embryonic day 10.75 in the caudal half of the midgut mesentery, but by embryonic day 11.0 are sporadically found on the cranial side of the midgut, thus suggesting possible extravascular migration aided by midgut rotation.


Asunto(s)
Arterias/embriología , Hematopoyesis , Sistema Hematopoyético/citología , Sistema Hematopoyético/embriología , Conducto Vitelino/irrigación sanguínea , Animales , Endotelio Vascular/embriología , Mesodermo/citología , Mesodermo/ultraestructura , Ratones
12.
Dev Cell ; 18(1): 39-51, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20152176

RESUMEN

Maintenance of single-layered endothelium, squamous endothelial cell shape, and formation of a patent vascular lumen all require defined endothelial cell polarity. Loss of beta1 integrin (Itgb1) in nascent endothelium leads to disruption of arterial endothelial cell polarity and lumen formation. The loss of polarity is manifested as cuboidal-shaped endothelial cells with dysregulated levels and mislocalization of normally polarized cell-cell adhesion molecules, as well as decreased expression of the polarity gene Par3 (pard3). beta1 integrin and Par3 are both localized to the endothelial layer, with preferential expression of Par3 in arterial endothelium. Luminal occlusion is also exclusively noted in arteries, and is partially rescued by replacement of Par3 protein in beta1-deficient vessels. Combined, our findings demonstrate that beta1 integrin functions upstream of Par3 as part of a molecular cascade required for endothelial cell polarity and lumen formation.


Asunto(s)
Arteriolas/embriología , Arteriolas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/metabolismo , Integrina beta1/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Arteriolas/citología , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Forma de la Célula/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Transducción de Señal/fisiología
13.
Cell Stem Cell ; 3(6): 625-36, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19041779

RESUMEN

Hematopoietic stem cells (HSCs) originate within the aortic-gonado-mesonephros (AGM) region of the midgestation embryo, but the cell type responsible for their emergence is unknown since critical hematopoietic factors are expressed in both the AGM endothelium and its underlying mesenchyme. Here we employ a temporally restricted genetic tracing strategy to selectively label the endothelium, and separately its underlying mesenchyme, during AGM development. Lineage tracing endothelium, via an inducible VE-cadherin Cre line, reveals that the endothelium is capable of HSC emergence. The endothelial progeny migrate to the fetal liver, and later to the bone marrow, and are capable of expansion, self-renewal, and multilineage hematopoietic differentiation. HSC capacity is exclusively endothelial, as ex vivo analyses demonstrate lack of VE-cadherin Cre induction in circulating and fetal liver hematopoietic populations. Moreover, AGM mesenchyme, as selectively traced via a myocardin Cre line, is incapable of hematopoiesis. Our genetic tracing strategy therefore reveals an endothelial origin of HSCs.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/embriología , Integrasas/metabolismo , Mesodermo/fisiología , Ratones , Ratones Transgénicos , Biología Molecular/métodos , Coloración y Etiquetado/métodos
14.
Circ Res ; 100(11): 1556-68, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17556669

RESUMEN

It has become increasingly clear that the Notch signaling pathway plays a critical role in the development and homeostasis of the cardiovascular system. This notion has emerged from loss- and gain-of-function analysis and from the realization that several hereditary cardiovascular disorders originate from gene mutations that have a direct impact on Notch signaling. Current research efforts are focused on determining the specific cellular and molecular effects of Notch signaling. The rationale for this has stemmed from the clinical importance and therapeutic potential of modulating vascular formation during various disease states. A more complete appreciation of Notch signaling, as it relates to vascular morphogenesis, requires an in-depth knowledge of expression patterns of the various signaling components and a comprehensive understanding of downstream targets. The goal of this review is to summarize current knowledge regarding Notch signaling during vascular development and within the adult vascular wall. Our focus is on the genetic analysis and cellular experiments that have been performed with Notch ligands, receptors, and downstream targets. We also highlight questions and controversies regarding the contribution of this pathway to vascular development.


Asunto(s)
Vasos Sanguíneos/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Vasos Sanguíneos/crecimiento & desarrollo , CADASIL/genética , Diferenciación Celular , Células Endoteliales/fisiología , Humanos , Ligandos , Transducción de Señal/genética
15.
Nature ; 445(7129): 776-80, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17259973

RESUMEN

In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.


Asunto(s)
Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Notch1/metabolismo , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/deficiencia , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Receptor Notch1/deficiencia , Retina/citología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Gene Expr Patterns ; 7(4): 461-70, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17161657

RESUMEN

The critical contribution of the Notch signaling pathway to vascular morphogenesis has been underscored by loss-of-function studies in mouse and zebrafish. Nonetheless, a comprehensive understanding as to how this signaling system influences the formation of blood vessels at the cellular and molecular level is far from reached. Here, we provide a detailed analysis of the distribution of active Notch1 in relation to its DSL (Delta, Serrate, Lag2) ligands, Jagged1, Delta-like1, and Delta-like4, during progressive stages of vascular morphogenesis and maturation. Important differences in the cellular distribution of Notch ligands were found. Jagged1 (Jag1) was detected in "stalk cells" of the leading vasculature and at arterial branch points, a site where Delta-like4 (Dll4) was clearly absent. Dll4 was the only ligand expressed in "tip cells" at the end of the growing vascular sprouts. It was also present in stalk cells, capillaries, arterial endothelium, and in mural cells of mature arteries in a homogenous manner. Delta-like1 (Dll1) was observed in both arteries and veins of the developing network, but was also excluded from mature arterial branch points. These findings support alternative and distinct roles for Notch ligands during the angiogenic process.


Asunto(s)
Neovascularización Fisiológica , Receptor Notch1/genética , Retina/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Receptor Notch1/biosíntesis , Retina/embriología , Retina/metabolismo , Vasos Retinianos/citología , Vasos Retinianos/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal , Proteínas de Pez Cebra
17.
Dev Dyn ; 235(12): 3413-22, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17072878

RESUMEN

To introduce temporal control in genetic experiments targeting the endothelium, we established a mouse line expressing tamoxifen-inducible Cre-recombinase (Cre-ERT2) under the regulation of the vascular endothelial cadherin promoter (VECad). Specificity and efficiency of Cre activity was documented by crossing VECad-Cre-ERT2 with the ROSA26R reporter mouse, in which a floxed-stop cassette has been placed upstream of the beta-galactosidase gene. We found that tamoxifen specifically induced widespread recombination in the endothelium of embryonic, neonatal, and adult tissues. Recombination was also documented in tumor-associated vascular beds and in postnatal angiogenesis assays. Furthermore, injection of tamoxifen in adult animals resulted in negligible excision (lower than 0.4%) in the hematopoietic lineage. The VECad-Cre-ERT2 mouse is likely to be a valuable tool to study the function of genes involved in vascular development, homeostasis, and in complex processes involving neoangiogenesis, such as tumor growth.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Endotelio Vascular/metabolismo , Integrasas/genética , Animales , Animales Recién Nacidos , Endotelio Vascular/embriología , Endotelio Vascular/crecimiento & desarrollo , Femenino , Genes Reporteros , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Embarazo , Recombinación Genética/efectos de los fármacos , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA