Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35052864

RESUMEN

Ribosome biogenesis is a cellular process critical for protein homeostasis during cell growth and multiplication. Our previous study confirmed up-regulation of ribosome biogenesis during endometriosis progression and malignant transition, thus anti-ribosome biogenesis may be effective for treating endometriosis and the associated complications. A mouse model with human endometriosis features was established and treated with three different drugs that can block ribosome biogenesis, including inhibitors against mTOR/PI3K (GSK2126458) and RNA polymerase I (CX5461 and BMH21). The average lesion numbers and disease frequencies were significantly reduced in treated mice as compared to controls treated with vehicle. Flow cytometry analyses confirmed the reduction of small peritoneal macrophage and neutrophil populations with increased large versus small macrophage ratios, suggesting inflammation suppression by drug treatments. Lesions in treated mice also showed lower nerve fiber density which can support the finding of pain-relief by behavioral studies. Our study therefore suggested ribosome biogenesis as a potential therapeutic target for treating endometriosis.

2.
Dis Model Mech ; 14(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382636

RESUMEN

Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.


Asunto(s)
Endometriosis , Animales , Modelos Animales de Enfermedad , Endometriosis/diagnóstico por imagen , Endometriosis/patología , Femenino , Antagonistas de Hormonas/farmacología , Humanos , Ratones
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536334

RESUMEN

Macrophages are intimately involved in the pathophysiology of endometriosis, a chronic inflammatory disorder characterized by the growth of endometrial-like tissue (lesions) outside the uterus. By combining genetic and pharmacological monocyte and macrophage depletion strategies we determined the ontogeny and function of macrophages in a mouse model of induced endometriosis. We demonstrate that lesion-resident macrophages are derived from eutopic endometrial tissue, infiltrating large peritoneal macrophages (LpM) and monocytes. Furthermore, we found endometriosis to trigger continuous recruitment of monocytes and expansion of CCR2+ LpM. Depletion of eutopic endometrial macrophages results in smaller endometriosis lesions, whereas constitutive inhibition of monocyte recruitment significantly reduces peritoneal macrophage populations and increases the number of lesions. Reprogramming the ontogeny of peritoneal macrophages such that embryo-derived LpM are replaced by monocyte-derived LpM decreases the number of lesions that develop. We propose a putative model whereby endometrial macrophages are "proendometriosis" while newly recruited monocyte-derived macrophages, possibly in LpM form, are "antiendometriosis." These observations highlight the importance of monocyte-derived macrophages in limiting disease progression.


Asunto(s)
Endometriosis/patología , Macrófagos Peritoneales/patología , Animales , Anticuerpos Monoclonales/metabolismo , Quimiocina CCL2/deficiencia , Quimiocina CCL2/metabolismo , Endometrio/patología , Femenino , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/patología , Cavidad Peritoneal/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-32038499

RESUMEN

Endometriosis is a complex, heterogeneous, chronic inflammatory condition impacting ~176 million women worldwide. It is associated with chronic pelvic pain, infertility, and fatigue, and has a substantial impact on health-related quality of life. Endometriosis is defined by the growth of endometrial-like tissue outside the uterus, typically on the lining of the pelvic cavity and ovaries (known as "lesions"). Macrophages are complex cells at the center of this enigmatic condition; they are critical for the growth, development, vascularization, and innervation of lesions as well as generation of pain symptoms. In health, tissue-resident macrophages are seeded during early embryonic life are vital for development and homeostasis of tissues. In the adult, under inflammatory challenge, monocytes are recruited from the blood and differentiate into macrophages in tissues where they fulfill functions, such as fighting infection and repairing wounds. The interplay between tissue-resident and recruited macrophages is now at the forefront of macrophage research due to their differential roles in inflammatory disorders. In some cancers, tumor-associated macrophages (TAMs) are comprised of tissue-resident macrophages and recruited inflammatory monocytes that differentiate into macrophages within the tumor. These macrophages of different origins play differential roles in disease progression. Herein, we review the complexities of macrophage dynamics in health and disease and explore the paradigm that under disease-modified conditions, macrophages that normally maintain homeostasis become modified such that they promote disease. We also interrogate the evidence to support the existence of multiple phenotypic populations and origins of macrophages in endometriosis and how this could be exploited for therapy.


Asunto(s)
Endometriosis/patología , Macrófagos/patología , Macrófagos/fisiología , Endometriosis/complicaciones , Endometriosis/inmunología , Femenino , Humanos , Dolor Pélvico/complicaciones , Dolor Pélvico/inmunología , Dolor Pélvico/patología , Enfermedades Peritoneales/inmunología , Enfermedades Peritoneales/patología , Fenotipo
5.
Proc Natl Acad Sci U S A ; 116(51): 25389-25391, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792175

RESUMEN

Endometriosis is a chronic pain condition affecting ∼176 million women worldwide. It is defined by the presence of endometrium-like tissue (lesions) outside the uterus, most commonly on the pelvic peritoneum. There is no cure for endometriosis. All endometriosis drug approvals to date have been contraceptive, limiting their use in women of child-bearing age. We have shown that human peritoneal mesothelial cells (HPMCs) recovered from the pelvic peritoneum of women with endometriosis exhibit significantly higher glycolysis, lower mitochondrial respiration, decreased enzymatic activity of pyruvate dehydrogenase (PDH), and increased production of lactate compared to HPMCs from women without disease. Transforming growth factor-ß1 (TGF-ß1) is elevated in the peritoneal fluid from women with endometriosis, and exposure of HPMCs to TGF-ß1 exacerbates this abnormal phenotype. Treatment of endometriosis HPMCs with the pyruvate dehydrogenase kinase (PDK) inhibitor/PDH activator dichloroacetate (DCA) normalizes HPMC metabolism, reduces lactate secretion, and abrogates endometrial stromal cell proliferation in a coculture model. Oral DCA reduced peritoneal fluid lactate concentrations and endometriosis lesion size in a mouse model. These findings provide the rationale for targeting metabolic processes as a noncontraceptive treatment for women with endometriosis either as a primary nonhormonal treatment or to prevent recurrence after surgery.


Asunto(s)
Ácido Dicloroacético/farmacología , Reposicionamiento de Medicamentos , Endometriosis , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Espacio Extracelular/efectos de los fármacos , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones , Peritoneo/citología
6.
FASEB J ; 33(10): 11210-11222, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291762

RESUMEN

Endometriosis is a common incurable inflammatory disorder that is associated with debilitating pelvic pain in women. Macrophages are central to the pathophysiology of endometriosis: they dictate the growth and vascularization of endometriosis lesions and more recently have been shown to promote lesion innervation. The aim of this study was to determine the mechanistic role of macrophages in producing pain associated with endometriosis. Herein, we show that macrophage depletion in a mouse model of endometriosis can reverse abnormal changes in pain behavior. We identified that disease-modified macrophages exhibit increased expression of IGF-1 in an in vitro model of endometriosis-associated macrophages and confirmed expression by lesion-resident macrophages in mice and women. Concentrations of IGF-1 were elevated in peritoneal fluid from women with endometriosis and positively correlate with their pain scores. Mechanistically, we demonstrate that macrophage-derived IGF-1 promotes sprouting neurogenesis and nerve sensitization in vitro. Finally, we show that the Igf-1 receptor inhibitor linsitinib reverses the pain behavior observed in mice with endometriosis. Our data support a role for macrophage-derived IGF-1 as a key neurotrophic and sensitizing factor in endometriosis, and we propose that therapies that modify macrophage phenotype may be attractive therapeutic options for the treatment of women with endometriosis-associated pain.-Forster, R., Sarginson, A., Velichkova, A., Hogg, C., Dorning, A., Horne, A. W., Saunders, P. T. K., Greaves, E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis.


Asunto(s)
Endometriosis/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Macrófagos/metabolismo , Dolor/metabolismo , Animales , Línea Celular , Endometriosis/patología , Femenino , Humanos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Neurogénesis/fisiología , Dolor/patología , Receptor IGF Tipo 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA