Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Microbiol ; 101(1): 152-66, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26998998

RESUMEN

Bradyrhizobium japonicum Mur and Escherichia coli Fur are manganese- and iron-responsive transcriptional regulators, respectively, that belong to the same protein family. Here, we show that neither Mur nor Fur discriminate between Fe(2+) and Mn(2+) in vitro nor is there a metal preference for conferral of DNA-binding activity on the purified proteins. When expressed in E. coli, B. japonicum Mur responded to iron, but not manganese, as determined by in vivo promoter occupancy and transcriptional repression activity. Moreover, E. coli Fur activity was manganese-dependent in B. japonicum. Total and chelatable iron levels were higher in E. coli than in B. japonicum under identical growth conditions, and Mur responded to iron in a B. japonicum iron export mutant that accumulated high levels of the metal. However, elevated manganese content in E. coli did not confer activity on Fur or Mur, suggesting a regulatory pool of manganese in B. japonicum that is absent in E. coli. We conclude that the metal selectivity of Mur and Fur depends on the cellular context in which they function, not on intrinsic properties of the proteins. Also, the novel iron sensing mechanism found in the rhizobia may be an evolutionary adaptation to the cellular manganese status.


Asunto(s)
Bradyrhizobium/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Manganeso/metabolismo , Proteínas Bacterianas/metabolismo , Bradyrhizobium/metabolismo , Proteínas de Transporte de Catión/metabolismo , Microambiente Celular , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Interacción Gen-Ambiente , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Proteínas Represoras/metabolismo , Transcripción Genética
2.
Mol Microbiol ; 93(4): 736-47, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24975873

RESUMEN

A Bradyrhizobium japonicum mutant defective in the gene encoding the high-affinity Mn(2+) transporter MntH has a severe growth phenotype under manganese limitation. Here, we isolated suppressor mutants of an mntH strain that grew under manganese limitation, and activities of high-affinity Mn(2+) transport and Mn(2+) -dependent enzymes were partially rescued. The suppressor strains harbour gain-of-function mutations in the gene encoding the Mg(2+) channel MgtE. The MgtE variants likely allow Mn(2+) entry via loss of a gating mechanism that normally holds the transporter in the closed state when cellular Mg(2+) levels are high. Both MgtE-dependent and MgtE-independent suppressor phenotypes were recapitulated by magnesium-limited growth of the mntH strain. Growth studies of wild-type cells suggest that manganese is toxic to cells when environmental magnesium is low. Moreover, extracellular manganese and magnesium levels were manipulated to inhibit growth without substantially altering the intracellular content of either metal, implying that manganese toxicity depends on its cellular distribution rather than the absolute concentration. Mg(2+) -dependent enzyme activities were found to be inhibited or stimulated by Mn(2+) . We conclude that Mn(2+) can occupy Mg(2+) binding sites in cells, and suggest that Mg(2+) -dependent processes are targets of manganese toxicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/enzimología , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Manganeso/toxicidad , Antiportadores/genética , Antiportadores/metabolismo , Proteínas Bacterianas/genética , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/metabolismo , Proteínas de Transporte de Catión/deficiencia , Eliminación de Gen , Supresión Genética
3.
Mol Microbiol ; 84(4): 766-77, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22463793

RESUMEN

Recent studies of Mn(2+) transport mutants indicate that manganese is essential for unstressed growth in some bacterial species, but is required primarily for induced stress responses in others. A Bradyrhizobium japonicum mutant defective in the high-affinity Mn(2+) transporter gene mntH has a severe growth phenotype under manganese limitation, suggesting a requirement for the metal under unstressed growth. Here, we found that activities of superoxide dismutase and the glycolytic enzyme pyruvate kinase were deficient in an mntH strain grown under manganese limitation. We identified pykM as the only pyruvate kinase-encoding gene based on deficiency in activity of a pykM mutant, rescue of the growth phenotype with pyruvate, and pyruvate kinase activity of purified recombinant PykM. PykM is unusual in that it required Mn(2+) rather than Mg(2+) for high activity, and that neither fructose-1,6-bisphosphate nor AMP was a positive allosteric effector. The mntH-dependent superoxide dismutase is encoded by sodM, the only expressed superoxide dismutase-encoding gene under unstressed growth conditions. An mntH mutant grew more slowly on pyruvate under manganese-limited conditions than did a pykM sodM double mutant, implying additional manganese-dependent processes. The findings implicate roles for manganese in key steps in unstressed oxidative metabolism in B. japonicum.


Asunto(s)
Bradyrhizobium/metabolismo , Manganeso/metabolismo , Proteínas Bacterianas/metabolismo , Bradyrhizobium/enzimología , Bradyrhizobium/crecimiento & desarrollo , Proteínas de Transporte de Catión/metabolismo , Coenzimas/metabolismo , Oxidación-Reducción , Piruvato Quinasa/metabolismo , Superóxido Dismutasa/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(37): 15390-5, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21880957

RESUMEN

The prevailing model of bacterial membrane function predicts that the outer membrane is permeable to most small solutes because of pores with limited selectivity based primarily on size. Here, we identified mnoP in the Gram-negative bacterium Bradyrhizobium japonicum as a gene coregulated with the inner membrane Mn(2+) transporter gene mntH. MnoP is an outer membrane protein expressed specifically under manganese limitation. MnoP acts as a channel to facilitate the tranlocation of Mn(2+), but not Co(2+) or Cu(2+), into reconstituted proteoliposomes. An mnoP mutant is defective in high-affinity Mn(2+) transport into cells and has a severe growth phenotype under manganese limitation. We suggest that the outer membrane is a barrier to divalent metal ions that requires a selective channel to meet the nutritional needs of the cell.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bradyrhizobium/metabolismo , Cationes Bivalentes/metabolismo , Canales Iónicos/metabolismo , Metales/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Bradyrhizobium/citología , Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Liposomas/metabolismo , Manganeso/deficiencia , Manganeso/metabolismo , Manganeso/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína
5.
J Biol Chem ; 285(34): 26074-80, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20573962

RESUMEN

Bradyrhizobium japonicum Fur mediates manganese-responsive transcriptional control of the mntH gene independently of iron, but it also has been implicated in iron-dependent regulation of the irr gene. Thus, we sought to address the apparent discrepancy in Fur responsiveness to metals. Irr is a transcriptional regulator found in iron-limited cells. Here, we show that irr gene mRNA was regulated by both iron and manganese, and repression occurred only in the presence of both metals. Under these conditions, Fur occupied the irr promoter in vivo in the parent strain, and irr mRNA expression was derepressed in a fur mutant. Under low iron conditions, the irr promoter was occupied by Irr, but not by Fur, and control by manganese was lost. Fur occupancy of the irr promoter was dependent on manganese, but not iron, in an irr mutant, suggesting that Irr normally interferes with Fur binding. Correspondingly, regulation of irr mRNA was dependent only on manganese in the irr strain. The Irr binding site within the irr promoter partially overlaps the Fur binding site. DNase I footprinting analysis showed that Irr interfered with Fur binding in vitro. In addition, Fur repression of transcription from the irr promoter in vitro was relieved by Irr. We conclude that Fur mediates manganese-dependent repression of irr transcription and that Irr acts as an antirepressor under iron limitation by preventing Fur binding to the promoter.


Asunto(s)
Proteínas Bacterianas/genética , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética , Factores de Transcripción/genética , Genes Bacterianos , Hierro/fisiología , Manganeso/fisiología , Transactivadores , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 107(23): 10691-5, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20498065

RESUMEN

Perception and response to nutritional iron availability by bacteria are essential to control cellular iron homeostasis. The Irr protein from Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to globally regulate iron-dependent gene expression. Heme binds directly to Irr to trigger its degradation. Here, we show that severe manganese limitation created by growth of a Mn(2+) transport mutant in manganese-limited media resulted in a cellular iron deficiency. In wild-type cells, Irr levels were attenuated under manganese limitation, resulting in reduced promoter occupancy of target genes and altered iron-dependent gene expression. Irr levels were high regardless of manganese availability in a heme-deficient mutant, indicating that manganese normally affects heme-dependent degradation of Irr. Manganese altered the secondary structure of Irr in vitro and inhibited binding of heme to the protein. We propose that manganese limitation destabilizes Irr under low-iron conditions by lowering the threshold of heme that can trigger Irr degradation. The findings implicate a mechanism for the control of iron homeostasis by manganese in a bacterium.


Asunto(s)
Bradyrhizobium/fisiología , Homeostasis , Hierro/fisiología , Manganeso/fisiología , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Viabilidad Microbiana , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
7.
Mol Microbiol ; 72(2): 399-409, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19298371

RESUMEN

The bacterial Nramp family protein MntH is a divalent metal transporter, but mntH mutants have little or no phenotype in organisms where it has been studied. Here, we identify the mntH homologue of Bradyrhizobium japonicum, and demonstrate that it is essential for Mn(2+) transport and for maintenance of cellular manganese homeostasis. Transport activity was induced under manganese deficiency, and Fe(2+) did not compete with (54)Mn(2+) for uptake by cells. The steady-state level of mntH mRNA was negatively regulated by manganese, but was unaffected by iron. Control of mntH expression and Mn(2+) transport by manganese was lost in a fur strain, resulting in constitutively high activity. Fur protected a 35 bp region of the mntH promoter in DNase I footprinting analysis that includes three imperfect direct repeat hexamers that are needed for full occupancy. Mn(2+) increased the affinity of Fur for the mntH promoter by over 50-fold, with a K(d) value of 2.2 nM in the presence of metal. The findings identify MntH as the major Mn(2+) transporter in B. japonicum, and show that Fur is a manganese-responsive regulator in that organism. Furthermore, Fe(2+) is neither a substrate for MntH nor a regulator of mntH expression in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Bradyrhizobium/metabolismo , Proteínas de Transporte de Catión/genética , Huella de ADN , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Eliminación de Secuencia , Glycine max/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA