Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Rep ; 42(10): 113272, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858465

RESUMEN

Remyelination after white matter injury (WMI) often fails in diseases such as multiple sclerosis because of improper recruitment and repopulation of oligodendrocyte precursor cells (OPCs) in lesions. How OPCs elicit specific intracellular programs in response to a chemically and mechanically diverse environment to properly regenerate myelin remains unclear. OPCs construct primary cilia, specialized signaling compartments that transduce Hedgehog (Hh) and G-protein-coupled receptor (GPCR) signals. We investigated the role of primary cilia in the OPC response to WMI. Removing cilia from OPCs genetically via deletion of Ift88 results in OPCs failing to repopulate WMI lesions because of reduced proliferation. Interestingly, loss of cilia does not affect Hh signaling in OPCs or their responsiveness to Hh signals but instead leads to dysfunctional cyclic AMP (cAMP)-dependent cAMP response element-binding protein (CREB)-mediated transcription. Because inhibition of CREB activity in OPCs reduces proliferation, we propose that a GPCR/cAMP/CREB signaling axis initiated at OPC cilia orchestrates OPC proliferation during development and in response to WMI.


Asunto(s)
Células Precursoras de Oligodendrocitos , Sustancia Blanca , Células Precursoras de Oligodendrocitos/metabolismo , Cilios/metabolismo , Sustancia Blanca/metabolismo , Proteínas Hedgehog/metabolismo , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proliferación Celular , Diferenciación Celular/fisiología
2.
Neuron ; 111(2): 190-201.e8, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36384142

RESUMEN

Oligodendrocyte precursor cells (OPCs) undergo an extensive and coordinated migration in the developing CNS, using the pre-formed scaffold of developed blood vessels as their physical substrate for migration. While OPC association with vasculature is critical for dispersal, equally important for permitting differentiation and proper myelination of target axons is their appropriate and timely detachment, but regulation of this process remains unclear. Here we demonstrate a correlation between the developmental formation of astrocytic endfeet on vessels and the termination of OPC perivascular migration. Ex vivo and in vivo live imaging shows that astrocyte endfeet physically displace OPCs from vasculature, and genetic abrogation of endfoot formation hinders both OPC detachment from vessels and subsequent differentiation. Astrocyte-derived semaphorins 3a and 6a act to repel OPCs from blood vessels at the cessation of their perivascular migration and, in so doing, permit subsequent OPC differentiation by insulating them from a maturation inhibitory endothelial niche.


Asunto(s)
Células Precursoras de Oligodendrocitos , Astrocitos , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología
3.
Neuron ; 109(19): 3104-3118.e6, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34390652

RESUMEN

Oligodendrocyte (OL) maturation arrest in human white matter injury contributes significantly to the failure of endogenous remyelination in multiple sclerosis (MS) and newborn brain injuries such as hypoxic ischemic encephalopathy (HIE) that cause cerebral palsy. In this study, we identify an oligodendroglial-intrinsic factor that controls OL maturation specifically in the setting of injury. We find a requirement for the ring finger protein Rnf43 not in normal development but in neonatal hypoxic injury and remyelination in the adult mammalian CNS. Rnf43, but not the related Znrf3, is potently activated by Wnt signaling in OL progenitor cells (OPCs) and marks activated OPCs in human MS and HIE. Rnf43 is required in an injury-specific context, and it promotes OPC differentiation through negative regulation of Wnt signal strength in OPCs at the level of Fzd1 receptor presentation on the cell surface. Inhibition of Fzd1 using UM206 promotes remyelination following ex vivo and in vivo demyelinating injury.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Oligodendroglía/patología , Ubiquitina-Proteína Ligasas/genética , Animales , Lesiones Encefálicas/metabolismo , Enfermedades Desmielinizantes/genética , Receptores Frizzled/efectos de los fármacos , Receptores Frizzled/genética , Humanos , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Remielinización/efectos de los fármacos , Remielinización/genética , Células Madre/metabolismo , Células Madre/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Vía de Señalización Wnt
4.
Nat Neurosci ; 24(2): 234-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526922

RESUMEN

Fibrosis is a common pathological response to inflammation in many peripheral tissues and can prevent tissue regeneration and repair. Here, we identified persistent fibrotic scarring in the CNS following immune cell infiltration in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Using lineage tracing and single-cell sequencing in EAE, we determined that the majority of the fibrotic scar is derived from proliferative CNS fibroblasts, not pericytes or infiltrating bone marrow-derived cells. Ablating proliferating fibrotic cells using cell-specific expression of herpes thymidine kinase led to an increase in oligodendrocyte lineage cells within the inflammatory lesions and a reduction in motor disability. We further identified that interferon-gamma pathway genes are enriched in CNS fibrotic cells, and the fibrotic cell-specific deletion of Ifngr1 resulted in reduced fibrotic scarring in EAE. These data delineate a framework for understanding the CNS fibrotic response.


Asunto(s)
Barrera Hematoencefálica/patología , Encefalomielitis Autoinmune Experimental/patología , Fibroblastos/patología , Fibrosis/patología , Infiltración Neutrófila , Médula Espinal/patología , Animales , Ratones , Oligodendroglía/patología
5.
Nat Neurosci ; 22(5): 709-718, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988524

RESUMEN

Disruption of the blood-brain barrier (BBB) is critical to initiation and perpetuation of disease in multiple sclerosis (MS). We report an interaction between oligodendroglia and vasculature in MS that distinguishes human white matter injury from normal rodent demyelinating injury. We find perivascular clustering of oligodendrocyte precursor cells (OPCs) in certain active MS lesions, representing an inability to properly detach from vessels following perivascular migration. Perivascular OPCs can themselves disrupt the BBB, interfering with astrocyte endfeet and endothelial tight junction integrity, resulting in altered vascular permeability and an associated CNS inflammation. Aberrant Wnt tone in OPCs mediates their dysfunctional vascular detachment and also leads to OPC secretion of Wif1, which interferes with Wnt ligand function on endothelial tight junction integrity. Evidence for this defective oligodendroglial-vascular interaction in MS suggests that aberrant OPC perivascular migration not only impairs their lesion recruitment but can also act as a disease perpetuator via disruption of the BBB.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Encefalitis/fisiopatología , Esclerosis Múltiple/fisiopatología , Células Precursoras de Oligodendrocitos/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Astrocitos/patología , Astrocitos/fisiología , Barrera Hematoencefálica/patología , Movimiento Celular , Células Cultivadas , Encefalitis/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Esclerosis Múltiple/patología , Células Precursoras de Oligodendrocitos/patología , Uniones Estrechas/metabolismo , Sustancia Blanca/patología
6.
Brain ; 141(1): 85-98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244098

RESUMEN

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Asunto(s)
Clemastina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Hipoxia Encefálica/complicaciones , Recuperación de la Función/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/diagnóstico por imagen , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Nervio Óptico/fisiopatología , Oxígeno/farmacología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
7.
Sci Rep ; 7(1): 12434, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974765

RESUMEN

Amyloid ß-protein (Aß) assembly is hypothesized to be a seminal neuropathologic event in Alzheimer's disease (AD). We used an unbiased D-amino acid substitution strategy to determine structure-assembly relationships of 76 different Aß40 and Aß42 peptides. We determined the effects of the substitutions on peptide oligomerization, secondary structure dynamics, fibril assembly dynamics, and fibril morphology. Our experiments revealed that the assembly of Aß42 was more sensitive to chiral substitutions than was Aß40 assembly. Substitutions at identical positions in the two peptides often, but not always, produced the same effects on assembly. Sites causing substantial effects in both Aß40 and Aß42 include His14, Gln15, Ala30, Ile31, Met35, and Val36. Sites whose effects were unique to Aß40 include Lys16, Leu17, and Asn 27, whereas sites unique to Aß42 include Phe20 and Ala21. These sites may be appropriate targets for therapeutic agents that inhibit or potentiate, respectively, these effects.


Asunto(s)
Aminoácidos/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Péptidos beta-Amiloides/ultraestructura , Benzotiazoles/metabolismo , Fluorescencia , Cinética , Fragmentos de Péptidos/química , Multimerización de Proteína , Estructura Secundaria de Proteína
8.
Biochem Biophys Res Commun ; 477(4): 952-956, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387232

RESUMEN

Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/ß-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/ß-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/ß-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/ß-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/ß-catenin signaling in adult and larval zebrafish spinal cord regeneration.


Asunto(s)
Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Médula Espinal/fisiopatología , Vía de Señalización Wnt , Pez Cebra/fisiología , beta Catenina/metabolismo , Animales , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA