Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8017): 636-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811732

RESUMEN

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

2.
Sci Adv ; 10(5): eadj4060, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295176

RESUMEN

Since the seminal work on MoS2, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.2 ns. Scanning tunneling microscopy reveals that photocarrier generation is intimately related to mid-gap defects, likely via trap-mediated Auger scattering. Only in state-of-the-art quality monolayers, with mid-gap trap densities as low as 109 cm-2, does intrinsic exciton physics start to dominate the terahertz response. Our findings reveal the necessity of knowing the defect density in understanding photophysics of TMDCs.

3.
ACS Nano ; 17(24): 24743-24752, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095969

RESUMEN

Defects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages. Here, we benchmark conductive atomic force microscopy (CAFM) by a direct comparison with STM in the characterization of transition metal dichalcogenides (TMDs). The results conclusively demonstrate that CAFM and STM image identical defects, giving results that are equivalent both qualitatively (defect appearance) and quantitatively (defect density). Further, we confirm that CAFM can achieve single-atom resolution, similar to that of STM, on both bulk and monolayer samples. The validation of CAFM as a facile and accurate tool for defect quantification provides a routine and reliable measurement that can complement other standard characterization techniques.

4.
ACS Nano ; 17(17): 16587-16596, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37610237

RESUMEN

Two-dimensional transition-metal dichalcogenides (TMDs) have attracted tremendous interest due to the unusual electronic and optoelectronic properties of isolated monolayers and the ability to assemble diverse monolayers into complex heterostructures. To understand the intrinsic properties of TMDs and fully realize their potential in applications and fundamental studies, high-purity materials are required. Here, we describe the synthesis of TMD crystals using a two-step flux growth method that eliminates a major potential source of contamination. Detailed characterization of TMDs grown by this two-step method reveals charged and isovalent defects with densities an order of magnitude lower than those in TMDs grown by a single-step flux technique. For WSe2, we show that increasing the Se/W ratio during growth reduces point defect density, with crystals grown at 100:1 ratio achieving charged and isovalent defect densities below 1010 and 1011 cm-2, respectively. Initial temperature-dependent electrical transport measurements of monolayer WSe2 yield room-temperature hole mobility above 840 cm2/(V s) and low-temperature disorder-limited mobility above 44,000 cm2/(V s). Electrical transport measurements of graphene-WSe2 heterostructures fabricated from the two-step flux grown WSe2 also show superior performance: higher graphene mobility, lower charged impurity density, and well-resolved integer quantum Hall states. Finally, we demonstrate that the two-step flux technique can be used to synthesize other TMDs with similar defect densities, including semiconducting 2H-MoSe2 and 2H-MoTe2 and semimetallic Td-WTe2 and 1T'-MoTe2.

5.
ACS Nano ; 17(7): 6966-6972, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36946518

RESUMEN

The ability to engineer atomically thin nanoscale lateral junctions is critical to lay the foundation for future two-dimensional (2D) device technology. However, the traditional approach to creating a heterojunction by direct growth of a heterostructure of two different materials constrains the available band offsets, and it is still unclear if large built-in potentials are attainable for 2D materials. The electronic properties of atomically thin semiconducting transition metal dichalcogenides (TMDs) are not static, and their exciton binding energy and quasiparticle band gap depend strongly on the proximal environment. Recent studies have shown that this effect can be harnessed to engineer the lateral band profile of a monolayer TMD to create a lateral electronic junction. Here we demonstrate the synthesis of a nanoscale lateral junction in monolayer MoSe2 by intercalating Se at the interface of an hBN/Ru(0001) substrate. The Se intercalation creates a spatially abrupt modulation of the local hBN/Ru work function, which is imprinted directly onto an overlying MoSe2 monolayer to create a lateral junction with a large built-in potential of 0.83 ± 0.06 eV. We spatially resolve the MoSe2 band profile and work function using scanning tunneling spectroscopy to map out the nanoscale depletion region. The Se intercalation also modifies the dielectric environment, influencing the local band gap renormalization and increasing the MoSe2 band gap by ∼0.26 ± 0.1 eV. This work illustrates that environmental proximity engineering provides a robust method to indirectly manipulate the band profile of 2D materials outside the limits of their intrinsic properties.

6.
ACS Nano ; 15(2): 2497-2505, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33481561

RESUMEN

The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator composed of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are also epitaxially grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 Å with an insulating band gap of 6 eV. Our low-energy electron diffraction measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moiré pattern analysis shows the BeO honeycomb structure maintains long-range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complementary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single-crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring 2D electronic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA