Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 17(3): e0263972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290382

RESUMEN

Swimming behavior of Chinook Salmon (Oncorhynchus tshawytscha) smolts affects transit time, route selection and survival in complex aquatic ecosystems. Behavior quantified at the river reach and junction scale is of particular importance for route selection and predator avoidance, though few studies have developed field-based approaches for quantifying swimming behavior of juvenile migratory fishes at this fine spatial scale. Two-dimensional acoustic fish telemetry at a river junction was combined with a three-dimensional hydrodynamic model to estimate in situ emigration swimming behavior of federally-threatened juvenile Chinook salmon smolts. Fish velocity over ground was estimated from telemetry, while the hydrodynamic model supplied simultaneous, colocated water velocities, with swimming velocity defined by the vector difference of the two velocities. Resulting swimming speeds were centered around 2 body lengths/second, and included distinct behaviors of positive rheotaxis, negative rheotaxis, lateral swimming, and passive transport. Lateral movement increased during the day, and positive rheotaxis increased in response to local hydrodynamic velocities. Swim velocity estimates were sensitive to the combination of vertical shear in water velocities and vertical distribution of fish.


Asunto(s)
Salmón , Natación , Migración Animal/fisiología , Animales , Ecosistema , Peces , Ríos , Salmón/fisiología , Natación/fisiología , Agua
2.
PeerJ ; 4: e1770, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27114859

RESUMEN

A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA