Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 29, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627636

RESUMEN

BACKGROUND: With the introduction of digital phenotyping and high-throughput data, traits that were previously difficult or impossible to measure directly have become easily accessible, offering the opportunity to enhance the efficiency and rate of genetic gain in animal production. It is of interest to assess how behavioral traits are indirectly related to the production traits during the performance testing period. The aim of this study was to assess the quality of behavior data extracted from day-wise video recordings and estimate the genetic parameters of behavior traits and their phenotypic and genetic correlations with production traits in pigs. Behavior was recorded for 70 days after on-test at about 10 weeks of age and ended at off-test for 2008 female purebred pigs, totaling 119,812 day-wise records. Behavior traits included time spent eating, drinking, laterally lying, sternally lying, sitting, standing, and meters of distance traveled. A quality control procedure was created for algorithm training and adjustment, standardizing recording hours, removing culled animals, and filtering unrealistic records. RESULTS: Production traits included average daily gain (ADG), back fat thickness (BF), and loin depth (LD). Single-trait linear models were used to estimate heritabilities of the behavior traits and two-trait linear models were used to estimate genetic correlations between behavior and production traits. The results indicated that all behavior traits are heritable, with heritability estimates ranging from 0.19 to 0.57, and showed low-to-moderate phenotypic and genetic correlations with production traits. Two-trait linear models were also used to compare traits at different intervals of the recording period. To analyze the redundancies in behavior data during the recording period, the averages of various recording time intervals for the behavior and production traits were compared. Overall, the average of the 55- to 68-day recording interval had the strongest phenotypic and genetic correlation estimates with the production traits. CONCLUSIONS: Digital phenotyping is a new and low-cost method to record behavior phenotypes, but thorough data cleaning procedures are needed. Evaluating behavioral traits at different time intervals offers a deeper insight into their changes throughout the growth periods and their relationship with production traits, which may be recorded at a less frequent basis.


Asunto(s)
Conducta Alimentaria , Porcinos/genética , Femenino , Animales , Fenotipo , Modelos Lineales
2.
J Anim Breed Genet ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523564

RESUMEN

Estimating heritabilities with large genomic models by established methods such as restricted maximum likelihood (REML) or Bayesian via Gibbs sampling is computationally expensive. Alternatively, heritability can be estimated indirectly by method R and by maximum predictivity, referred to as MaxPred here, at a much lower computing cost. By method R, the heritability used for predictions with whole and partial data is considered the best estimate when the predictions based on partial data are unbiased relative to those with the complete data. By MaxPred, the heritability estimate is the one that maximizes predictivity. This study compared heritability estimation with genomic information using average information REML (AI-REML), method R and MaxPred. A simulated population was generated with ten generations of 5000 animals each and an effective population size of 80. Each animal had one record for a trait with a heritability of 0.3, a phenotypic variance of 10.0 and was genotyped at 50 k SNP. In method R, the heritability estimate is found when the expectation of a regression coefficient is equal to one. The regression is the EBV of selection candidates calculated with the whole dataset regressed on the EBV of candidates calculated from a partial dataset. In this study, we used the GBLUP framework and therefore, GEBV was calculated. The partial dataset was created by removing the last generation of phenotypes. Predictivity was defined as the correlation between the adjusted phenotypes of the selection candidates and their GEBV calculated from the partial data. We estimated the heritability for populations that included between three and 10 generations. In every scenario, predictivity increased as more data was used and was the highest at the simulated heritability. However, the predictivity for all data subsets and all heritabilities compared did not differ more than 0.01, suggesting MaxPred is not the best indication for heritability estimation. For the whole dataset, the heritability was estimated as 0.30 ± 0.01, 0.26 ± 0.01 and 0.30 ± 0.04 for AI-REML without genomics, AI-REML with genomics and method R with genomics, respectively. Heritability estimation with genomics by method R reduced timing by 83%, implying a reduction in computing time from 9.5 to 1.6 h, on average, compared to AI-REML with genomics. Method R has the potential to estimate heritabilities with large genomic information at a low cost when many generations of animals are present; however, the standard error can be high when only a few iterations are used.

3.
JDS Commun ; 3(5): 343-347, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36340904

RESUMEN

Evaluations using single-step genomic BLUP require blending the genomic relationship matrix (G) with a positive definite matrix to ensure nonsingularity for solving the mixed model equations. Many organizations blend G with a proportion of the numerator relationship matrix for genotyped animals (A 22) to improve stability and possibly add a residual polygenic effect. However, when nearly all the polygenic variance is explained by G, blending with A 22 may cause inflation and add excess computing time; thus, blending with an identity matrix (I) multiplied by a small value may be a better solution. The objective of this study was to evaluate changes in reliability and inflation of genomic estimated breeding values, convergence rate, elapsed wall-clock time for blending G with different levels of A 22 or I, and develop a more time-efficient blending method. A US Holstein cattle data set was used with 9.7 million animals in the pedigree, 569,404 animals with genotypes, and 10.1 million stature phenotypes. Blending G by adding a small value to the diagonal elements had comparable performance to A 22 with fewer rounds to convergence required to solve the system of equations. Reliability and inflation of genomic estimated breeding values ranged from 0.63 to 0.68 and 0.86 to 0.89 for all blending scenarios tested. The current blending default in the BLUPF90 software is to replace G with (1 - ß)G + ßA 22, where ß equals 0.05. In this study, ß values of 0.30, 0.20, 0.05, 0.01, 0.005, and 0.001 were evaluated with A 22 and I. Negligible differences in elapsed computing time between the blending types and levels were observed. Subsequently, the current blending algorithm used in the BLUPF90 family of programs was optimized, reducing the blending time from approximately 2 h to 5 min for A 22 and less than 1 s for I. The new time difference between blending with A 22 or I is negligible and not computationally critical. The results indicate that blending G with A 22 does not have clear advantages over blending with a small proportion of I.

4.
J Anim Sci ; 99(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343280

RESUMEN

It is of interest to evaluate crossbred pigs for hot carcass weight (HCW) and birth weight (BW); however, obtaining a HCW record is dependent on livability (LIV) and retained tag (RT). The purpose of this study is to analyze how HCW evaluations are affected when herd removal and missing identification are included in the model and examine if accounting for the reasons for missing traits improves the accuracy of predicting breeding values. Pedigree information was available for 1,965,077 purebred and crossbred animals. Records for 503,716 commercial three-way crossbred terminal animals from 2014 to 2019 were provided by Smithfield Premium Genetics. Two pedigree-based models were compared; model 1 (M1) was a threshold-linear model with all four traits (BW, HCW, RT, and LIV), and model 2 (M2) was a linear model including only BW and HCW. The fixed effects used in the model were contemporary group, sex, age at harvest (for HCW only), and dam parity. The random effects included direct additive genetic and random litter effects. Accuracy, dispersion, bias, and Pearson correlations were estimated using the linear regression method. The heritabilities were 0.11, 0.07, 0.02, and 0.04 for BW, HCW, RT, and LIV, respectively, with standard errors less than 0.01. No difference was observed in heritabilities or accuracies for BW and HCW between M1 and M2. Accuracies were 0.33, 0.37, 0.19, and 0.23 for BW, HCW, RT, and LIV, respectively. The genetic correlation between BW and RT was 0.34 ± 0.03, and between BW and LIV was 0.56 ± 0.03. Similarly, the genetic correlation between HCW and RT was 0.26 ± 0.04, and between HCW and LIV was 0.09 ± 0.05, respectively. The positive and moderate genetic correlations between BW and other traits imply a heavier BW resulted in a higher probability of surviving to harvest. Genetic correlations between HCW and other traits were lower due to the large quantity of missing records. Despite the heritable and correlated aspects of RT and LIV, results imply no major differences between M1 and M2; hence, it is unnecessary to include these traits in classical models for BW and HCW.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Animales , Peso al Nacer , Peso Corporal , Femenino , Paridad , Linaje , Fenotipo , Embarazo , Porcinos/genética
5.
J Anim Sci ; 99(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33733277

RESUMEN

Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was -0.13 and -0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Genómica , Genotipo , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Responsabilidad Social , Porcinos/genética
6.
J Anim Breed Genet ; 138(1): 4-13, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32985749

RESUMEN

The objective of this study was to determine whether the linear regression (LR) method could be used to validate genomic threshold models. Statistics for the LR method were computed from estimated breeding values (EBVs) using the whole and truncated data sets with variances from the reference and validation populations. The method was tested using simulated and real chicken data sets. The simulated data set included 10 generations of 4,500 birds each; genotypes were available for the last three generations. Each animal was assigned a continuous trait, which was converted to a binary score assuming an incidence of failure of 7%. The real data set included the survival status of 186,596 broilers (mortality rate equal to 7.2%) and genotypes of 18,047 birds. Both data sets were analysed using best linear unbiased predictor (BLUP) or single-step GBLUP (ssGBLUP). The whole data set included all phenotypes available, whereas in the partial data set, phenotypes of the most recent generation were removed. In the simulated data set, the accuracies based on the LR formulas were 0.45 for BLUP and 0.76 for ssGBLUP, whereas the correlations between true breeding values and EBVs (i.e. true accuracies) were 0.37 and 0.65, respectively. The gain in accuracy by adding genomic information was overestimated by 0.09 when using the LR method compared to the true increase in accuracy. However, when the estimated ratio between the additive variance computed based on pedigree only and on pedigree and genomic information was considered, the difference between true and estimated gain was <0.02. Accuracies of BLUP and ssGBLUP with the real data set were 0.41 and 0.47, respectively. This small improvement in accuracy when using ssGBLUP with the real data set was due to population structure and lower heritability. The LR method is a useful tool for estimating improvements in accuracy of EBVs due to the inclusion of genomic information when traditional validation methods as k-fold validation and predictive ability are not applicable.


Asunto(s)
Pollos , Genoma , Animales , Genómica , Genotipo , Modelos Lineales , Modelos Genéticos , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA