Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Heliyon ; 6(1): e03263, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32021935

RESUMEN

PURPOSE: Over 90% of all cancer related deaths are due to metastasis. However, current diagnostic tools can't reliably discriminate between invasive and localized cancers. PATIENTS AND METHODS: In this proof-of-concept study, we employed the embryonic stem cell marker TRA-1-60 (TRA+) to identify TRA + cells within the blood of prostate cancer patients and searched for TRA + cells in men with metastatic and localized cancers. We isolated whole peripheral blood mononuclear cells from 26 metastatic prostate cancer patients, from 13 patients with localized prostate cancer and from 17 healthy controls. Cells were stained for DAPI, CD45 and TRA + by immunofluorescence and imaged by epi-fluorescence microscopy. Imaged-based software was used both to identify TRA + cells, and to analyze CD45 levels in TRA+ and negative cells. RESULTS: We found high numbers of TRA + cells within the blood of metastatic cancer patients, whereas healthy individuals or men with localized prostate cancer showed none or very low numbers of TRA + cells. Further analysis of the CD45 levels of TRA + cells revealed a small population of TRA + cells with almost undetectable CD45 levels that were found frequently in metastatic prostate cancer patients. By excluding CD45 positive cells from the TRA + cell pool, we were able to refine the assay to be highly specific in identifying men with metastatic disease. In fact, the difference of CD45 levels between TRA+ and negative cells was a robust measure to distinguish between men with localized and metastatic prostate cancers in this small patient cohort. CONCLUSIONS: The data suggest that metastatic prostate cancer patient have significant numbers of TRA+/CD45low cells which might represent a potential tool for diagnostic assessment in the future.

2.
Bioorg Med Chem Lett ; 21(16): 4909-12, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21742496

RESUMEN

The design, synthesis and biological evaluation of a novel series of isoindoline-based hydroxamates is described. Several analogs were shown to inhibit HDAC1 with IC(50) values in the low nanomolar range and inhibit cellular proliferation of HCT116 human colon cancer cells in the sub-micromolar range. The cellular potency of compound 17e was found to have greater in vitro anti-proliferative activity than several compounds in late stage clinical trials for the treatment of cancer. The in vitro safety profiles of selected compounds were assessed and shown to be suitable for further lead optimization.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Isoindoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
3.
J Med Chem ; 54(13): 4752-72, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21650221

RESUMEN

Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.


Asunto(s)
Acrilamidas/toxicidad , Antineoplásicos/toxicidad , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/toxicidad , Ácidos Hidroxámicos/toxicidad , Acrilamidas/síntesis química , Acrilamidas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Canal de Potasio ERG1 , Células HCT116 , Semivida , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacología , Técnicas In Vitro , Ratones , Ratones Desnudos , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Trasplante de Neoplasias , Técnicas de Placa-Clamp , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Distribución Tisular , Trasplante Heterólogo
4.
Assay Drug Dev Technol ; 9(6): 608-19, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21561375

RESUMEN

Ion channel assays are essential in drug discovery, not only for identifying promising new clinical compounds, but also for minimizing the likelihood of potential side effects. Both applications demand optimized throughput, cost, and predictive accuracy of measured membrane current changes evoked or modulated by drug candidates. Several competing electrophysiological technologies are available to address this demand, but important gaps remain. We describe the industrial application of a novel microfluidic-based technology that combines compounds, cells, and buffers on a single, standard well plate. Cell trapping, whole cell, and compound perfusion are accomplished in interconnecting microfluidic channels that are coupled to pneumatic valves, which emancipate the system from robotics, fluidic tubing, and associated maintenance. IonFlux™ is a state-of-the-art, compact system with temperature control and continuous voltage clamp for potential application in screening for voltage- and ligand-gated ion channel modulators. Here, ensemble recordings of the IonFlux system were validated with the human Ether-à-go-go related gene (hERG) channel (stably expressed in a Chinese hamster ovary cell line), which has established biophysical and pharmacological characteristics in other automated planar patch systems. We characterized the temperature dependence of channel activation and its reversal potential. Concentration response characteristics of known hERG blockers and control compounds obtained with the IonFlux system correlated with literature and internal data obtained on this cell line with the QPatch HT system. Based on the biophysical and pharmacological data, we conclude that the IonFlux system offers a novel, versatile, automated profiling, and screening system for ion channel targets with the benefit of temperature control.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/fisiología , Microfluídica/métodos , Técnicas de Placa-Clamp/instrumentación , Bloqueadores de los Canales de Potasio/farmacología , Animales , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Humanos , Microfluídica/instrumentación , Técnicas de Placa-Clamp/métodos
5.
Assay Drug Dev Technol ; 8(6): 766-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21133679

RESUMEN

The normal electrophysiologic behavior of the heart is determined by the integrated activity of specific cardiac ionic currents. Mutations in genes encoding the molecular components of individual cardiac ion currents have been shown to result in multiple cardiac arrhythmia syndromes. Presently, 12 genes associated with inherited long QT syndrome (LQTS) have been identified, and the most common mutations are in the hKCNQ1 (LQT1, Jervell and Lange-Nielson syndrome), hKCNH2 (LQT2), and hSCN5A (LQT3, Brugada syndrome) genes. Several drugs have been withdrawn from the market or received black box labeling due to clinical cases of QT interval prolongation, ventricular arrhythmias, and sudden death. Other drugs have been denied regulatory approval owing to their potential for QT interval prolongation. Further, off-target activity of drugs on cardiac ion channels has been shown to be associated with increased mortality in patients with underlying cardiovascular diseases. Since clinical arrhythmia risk is a major cause for compound termination, preclinical profiling for off-target cardiac ion channel interactions early in the drug discovery process has become common practice in the pharmaceutical industry. In the present study, we report assay development for three cardiac ion channels (hKCNQ1/minK, hCa(v)1.2, and hNa(v)1.5) on the IonWorks Quattro™ system. We demonstrate that these assays can be used as reliable pharmacological profiling tools for cardiac ion channel inhibition to assess compounds for cardiac liability during drug discovery.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/fisiología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Proteínas Musculares/antagonistas & inhibidores , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Descubrimiento de Drogas , Electrocardiografía , Células HEK293 , Humanos , Canal de Potasio KCNQ1/fisiología , Proteínas Musculares/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Reproducibilidad de los Resultados , Canales de Sodio/fisiología
6.
IDrugs ; 11(11): 795-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18988121

RESUMEN

Select Biosciences' Fourth Annual Ion Channel Targets conference brought together scientists from industry and academia who are interested in the discovery of therapeutics targeted to various ion channels implicated in human disease. Topics addressed included methodological aspects of screening for ion channel drugs, the discovery of novel inhibitors and activators of ion channels that are drug candidates, and suggestions of potential new ion channel targets.


Asunto(s)
Canales Iónicos/fisiología , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Carbamatos/farmacología , Carbamatos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico
7.
J Neurosci ; 25(35): 7934-43, 2005 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16135750

RESUMEN

We have cloned and characterized mouse and human variants of MONaKA, a novel protein that interacts with and modulates the plasma membrane Na,K-ATPase. MONaKA was cloned based on its sequence homology to the Drosophila Slowpoke channel-binding protein dSlob, but mouse and human MONaKA do not bind to mammalian Slowpoke channels. At least two splice variants of MONaKA exist; the splicing is conserved perfectly between mouse and human, suggesting that it serves some important function. Both splice variants of MONaKA are expressed widely throughout the CNS and peripheral nervous system, with different splice variant expression ratios in neurons and glia. A yeast two-hybrid screen with MONaKA as bait revealed that it binds tightly to the beta1 and beta3 subunits of the Na,K-ATPase. The association between MONaKA and Na,K-ATPase beta subunits was confirmed further by coimmunoprecipitation from transfected cells, mouse brain, and cultured mouse astrocytes. A glutathione S-transferase-MONaKA fusion protein inhibits Na,K-ATPase activity from whole brain or cultured astrocytes. Furthermore, transfection of MONaKA inhibits 86Rb+ uptake via the Na,K-ATPase in intact cells. These results are consistent with the hypothesis that MONaKA modulates brain Na,K-ATPase and may thereby participate in the regulation of electrical excitability and synaptic transmission.


Asunto(s)
Membrana Celular/enzimología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Empalme Alternativo , Animales , Membrana Celular/genética , Células Cultivadas , Clonación Molecular/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/enzimología , Vías Nerviosas/fisiología , Proteínas Serina-Treonina Quinasas , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , Sinapsis/enzimología , Sinapsis/fisiología
8.
J Biomol Screen ; 7(1): 79-85, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11897058

RESUMEN

The study of ion channel-mediated changes in membrane potential using the conventional bisoxonol fluorescent dye DiBAC(4)(3) has several limitations, including a slow onset of response and multistep preparation, that limit both the fidelity of the results and the throughput of membrane potential assays. Here, we report the characterization of the FLIPR Membrane Potential Assay Kit (FMP) in cells expressing voltage- and ligand-gated ion channels. The steady-state and kinetics fluorescence properties of FMP were compared with those of DiBAC(4)(3), using both FLIPR and whole-cell patch-clamp recording. Our experiments with the voltage-gated K(+) channel, hElk-1, revealed that FMP was 14-fold faster than DiBAC(4)(3) in response to depolarization. On addition of 60 mM KCl, the kinetics of fluorescence changes of FMP using FLIPR were identical to those observed in the electrophysiological studies using whole-cell current clamp. In addition, KCl concentration-dependent increases in FMP fluorescence correlated with the changes of membrane potential recorded in whole-cell patch clamp. In studies examining vanilloid receptor-1, a ligand-gated nonselective cation channel, FMP was superior to DiBAC(4)(3) with respect to both kinetics and amplitude of capsaicin-induced fluorescence changes. FMP has also been used to measure the activation of K(ATP) and hERG. Thus this novel membrane potential dye represents a powerful tool for developing high-throughput screening assays for ion channels.


Asunto(s)
Biotecnología/métodos , Membrana Celular/metabolismo , Colorantes Fluorescentes/farmacología , Canales Iónicos , Adenosina Trifosfato/metabolismo , Animales , Automatización , Células CHO , Cationes , Línea Celular , Cricetinae , Relación Dosis-Respuesta a Droga , Electrofisiología , Humanos , Cinética , Técnicas de Placa-Clamp , Potasio/metabolismo , Cloruro de Potasio/química , Espectrometría de Fluorescencia , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 99(2): 1035-40, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11805342

RESUMEN

The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.


Asunto(s)
Bloqueadores de los Canales de Potasio , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/química , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Técnicas In Vitro , Activación del Canal Iónico , Cinética , Proteínas de Interacción con los Canales Kv , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Oocitos/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Canales de Potasio Shal , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA