Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Biotechnol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261590

RESUMEN

Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.

2.
Cell Stress Chaperones ; 29(3): 456-471, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703814

RESUMEN

This study identified tumorigenic processes most dependent on murine heat shock protein 72 (HSP72) in the mouse mammary tumor virus-PyMT mammary tumor model, which give rise to spontaneous mammary tumors that exhibit HSP72-dependent metastasis to the lung. RNA-seq expression profiling of Hspa1a/Hspa1b (Hsp72) WT and Hsp72-/- primary mammary tumors discovered significantly lower expression of genes encoding components of the extracellular matrix (ECM) in Hsp72 knockout mammary tumors compared to WT controls. In vitro studies found that genetic or chemical inhibition of HSP72 activity in cultured collagen-expressing human or murine cells also reduces mRNA and protein levels of COL1A1 and several other ECM-encoding genes. In search of a possible mechanistic basis for this relationship, we found HSP72 to support the activation of the tumor growth factor-ß-suppressor of mothers against decapentaplegic-3 signaling pathway and evidence of suppressor of mothers against decapentaplegic-3 and HSP72 coprecipitation, suggesting potential complex formation. Human COL1A1 mRNA expression was found to have prognostic value for HER2+ breast tumors over other breast cancer subtypes, suggesting a possible human disease context where targeting HSP72 may have a therapeutic rationale. Analysis of human HER2+ breast tumor gene expression data using a gene set comprising ECM-related gene and protein folding-related gene as an input to the statistical learning algorithm, Galgo, found a subset of these genes that can collectively stratify patients by relapse-free survival, further suggesting a potential interplay between the ECM and protein-folding genes may contribute to tumor progression.


Asunto(s)
Matriz Extracelular , Proteínas del Choque Térmico HSP72 , Animales , Humanos , Matriz Extracelular/metabolismo , Femenino , Ratones , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas del Choque Térmico HSP72/genética , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Regulación Neoplásica de la Expresión Génica , Ratones Noqueados , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Transducción de Señal , Metástasis de la Neoplasia
3.
Bioengineering (Basel) ; 11(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247923

RESUMEN

Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid ß (Aß) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aß pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aß degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.

4.
Methods Mol Biol ; 2693: 39-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540425

RESUMEN

RNA sequencing (RNA-seq) is a powerful method of transcriptional analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq can be used for differential gene expression (DGE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology or pathway analysis to provide insight into processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Chaperonas Moleculares , RNA-Seq , Flujo de Trabajo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Chaperonas Moleculares/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma
6.
Nat Commun ; 14(1): 2803, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193692

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson's-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Plaguicidas , Humanos , Plaguicidas/toxicidad , Enfermedad de Parkinson/genética , Neuronas Dopaminérgicas
7.
Elife ; 122023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083703

RESUMEN

Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.


Asunto(s)
Neurogénesis , Neuronas , Humanos , Neurogénesis/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Proyección Neuronal , Astrocitos
8.
Neuroimage ; 274: 120127, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37086876

RESUMEN

Cortical thickness reductions differ between individuals with psychotic disorders and comparison subjects even in early stages of illness. Whether these reductions covary as expected by functional network membership or simply by spatial proximity has not been fully elucidated. Through orthonormal projective non-negative matrix factorization, cortical thickness measurements in functionally-annotated regions from MRI scans of early-stage psychosis and matched healthy controls were reduced in dimensionality into features capturing positive covariance. Rather than matching the functional networks, the covarying regions in each feature displayed a more localized spatial organization. With Bayesian belief networks, the covarying regions per feature were arranged into a network topology to visualize the dependency structure and identify key driving regions. The features demonstrated diagnosis-specific differences in cortical thickness distributions per feature, identifying reduction-vulnerable spatial regions. Differences in key cortical thickness features between psychosis and control groups were delineated, as well as those between affective and non-affective psychosis. Clustering of the participants, stratified by diagnosis and clinical variables, characterized the clinical traits that define the cortical thickness patterns. Longitudinal follow-up revealed that in select clusters with low baseline cortical thickness, clinical traits improved over time. Our study represents a novel effort to characterize brain structure in relation to functional networks in healthy and clinical populations and to map patterns of cortical thickness alterations among ESP patients onto clinical variables for a better understanding of brain pathophysiology.


Asunto(s)
Corteza Cerebral , Trastornos Psicóticos , Humanos , Estudios Longitudinales , Teorema de Bayes , Corteza Cerebral/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética
9.
Nat Aging ; 3(3): 327-345, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118429

RESUMEN

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Asunto(s)
Células Endoteliales , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Envejecimiento/genética , Parabiosis , Encéfalo
10.
Front Cell Neurosci ; 17: 1327361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38314348

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron (MN) disease with severely limited treatment options. Identification of effective treatments has been limited in part by the lack of predictive animal models for complex human disorders. Here, we utilized pharmacologic ER stressors to exacerbate underlying sensitivities conferred by ALS patient genetics in induced pluripotent stem cell (iPSC)-derived motor neurons (MNs). In doing so, we found that thapsigargin and tunicamycin exposure recapitulated ALS-associated degeneration, and that we could rescue this degeneration via MAP4K4 inhibition (MAP4K4i). We subsequently identified mechanisms underlying MAP4K4i-mediated protection by performing phosphoproteomics on iPSC-derived MNs treated with ER stressors ±MAP4K4i. Through these analyses, we found JNK, PKC, and BRAF to be differentially modulated in MAP4K4i-protected MNs, and that inhibitors to these proteins could also rescue MN toxicity. Collectively, this study highlights the value of utilizing ER stressors in ALS patient MNs to identify novel druggable targets.

12.
Cell Stress Chaperones ; 27(5): 461-478, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689138

RESUMEN

Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-ß (fAß) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAß was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAß was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAß-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAß-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAß.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Péptidos beta-Amiloides/toxicidad , Medios de Cultivo Condicionados/farmacología , Proteínas HSP90 de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo
13.
Commun Biol ; 4(1): 332, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712729

RESUMEN

A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-ß and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-ß and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-ß. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Proteoglicanos/metabolismo , Animales , Sitios de Unión , Cartílago Articular/efectos de los fármacos , Bovinos , Células Cultivadas , Condrocitos/efectos de los fármacos , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteoglicanos/genética , Factor de Crecimiento Transformador alfa/farmacología , Factor de Crecimiento Transformador beta2/farmacología
14.
Cell Syst ; 8(5): 412-426.e7, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31078528

RESUMEN

Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Aclimatación , Antineoplásicos/farmacología , Cardiotoxicidad/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Clorhidrato de Erlotinib/farmacología , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lapatinib/farmacología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología , Sunitinib/farmacología
15.
Sci Rep ; 9(1): 4084, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858499

RESUMEN

Aggression and courtship behavior were examined of wild Drosophila melanogaster flies isolated from two contrasting microclimates found at Evolution Canyon in Mt. Carmel, Israel: an African-like dry tropical Slope (AS) and a European-like humid temperate Slope (ES), separated by 250 meters. Studies were carried out to ask whether behavioral differences existed between the two populations obtained from opposite slopes with divergent microclimates in Israel. First, we measured and compared intraslope aggression between same sex fly pairings collected from the same slope. Both male and female flies displayed similar fighting abilities from both slopes. ES males, however, from the humid biome, showed a tendency to lunge more per aggressive encounter, compared with AS males from the dry biome. Next, we tested interslope aggression by pairing flies from opposite slopes. ES males displayed higher numbers of lunges, and won more fights against their AS opponents. We also observed enhanced courtship performances in ES compared to AS males. The fighting and courtship superiority seen in ES males could reinforce fitness and pre-mating reproductive isolation mechanisms that underlie incipient sympatric speciation. This may support an evolutionary advantage of adaptively divergent fruit fly aggression phenotypes from different environments.


Asunto(s)
Agresión/fisiología , Drosophila melanogaster/fisiología , Especiación Genética , Simpatría/genética , Animales , Evolución Biológica , Cortejo , Drosophila melanogaster/genética , Microclima , Fenotipo
16.
Schizophr Res ; 209: 234-244, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30826261

RESUMEN

BACKGROUND: There is a large variability in the recovery trajectory and outcome of first episode of psychosis [FEP] patients. To date, individuals' outcome trajectories at early stage of illness and potential risk factors associated with a poor outcome trajectory are largely unknown. This study aims to apply three separate predictors (positive symptoms, negative symptoms, and soft neurological signs) to identify homogeneous function outcome trajectories in patients with FEP using objective data-driven methods, and to explore the potential risk /protective factors associated with each trajectory. METHODS: A total of 369 first episode patients (93% antipsychotic naive) were included in the baseline assessments and followed-up at 4-8 weeks, 6 months, and 1 year. K means cluster modeling for longitudinal data (kml3d) was used to identify distinct, homogeneous clusters of functional outcome trajectories. Patients with at least 3 assessments were included in the trajectory analyses (N = 129). The Scale for the Assessment of Negative Symptoms (SANS), Scale for the Assessment of Positive Symptoms (SAPS), and Neurological examination abnormalities (NEA) were used as predictors against Global Assessment of Functioning Scale (GAF). RESULTS: In each of the three predictor models, four distinct functional outcome trajectories emerged: "Poor", "Intermediate", High" and "Catch-up". Individuals with male gender; ethnic minority status; low premorbid adjustment; low executive function/IQ, low SES, personality disorder, substance use history may be risk factors for poor recovery. CONCLUSIONS: Functioning recovery in individuals with FEP is heterogeneous, although distinct recovery profiles are apparent. Data-driven trajectory analysis can facilitate better characterization of individual longitudinal patterns of functioning recovery.


Asunto(s)
Evaluación de Resultado en la Atención de Salud , Trastornos Psicóticos/fisiopatología , Recuperación de la Función/fisiología , Adolescente , Adulto , Análisis por Conglomerados , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Methods Mol Biol ; 1709: 233-252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177664

RESUMEN

RNA sequencing (RNA-seq) is a powerful method of transcript analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq has many applications including differential gene expression (DE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology analysis to provide insights into cellular processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Chaperonas Moleculares/metabolismo , Análisis de Secuencia de ARN/métodos , Flujo de Trabajo , Alelos , Animales , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Sci Rep ; 6: 32249, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27577089

RESUMEN

Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules.


Asunto(s)
Empalme Alternativo , Transcriptoma , Animales , Células Cultivadas , Células Endoteliales/fisiología , Regulación de la Expresión Génica , Ratones Transgénicos , Neuroglía/fisiología , Neuronas/fisiología , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA