Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Rep ; 14(1): 11450, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769394

RESUMEN

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Asunto(s)
Antineoplásicos , Indoles , Nanopartículas , Polímeros , Dióxido de Silicio , Humanos , Indoles/química , Indoles/farmacología , Dióxido de Silicio/química , Polímeros/química , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Porosidad , Células MCF-7 , Umbeliferonas/química , Umbeliferonas/farmacología , Portadores de Fármacos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
2.
J Biomater Sci Polym Ed ; : 1-18, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809850

RESUMEN

In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.

3.
Curr Med Chem ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561618

RESUMEN

BACKGROUND: The beneficial effects of curcumin against various chronic disorders have been shown in the last few decades. However, due to its low bioavailability, therapeutic effects are less than expected. Piperine has been used in scientific evaluations as an effective compound to increase the bioavailability of curcumin. The present review investigated the impact of curcumin plus piperine intake on oxidative stress and inflammatory markers of Randomized Clinical Trials (RCTs). METHODS: Using relevant keywords, we searched Cochrane Library, Scopus, PubMed, and Web of Science between January 1st, 1970, and September 30th, 2022. A comprehensive search for RCTs was performed. Continuous data were pooled by Standard Mean Difference (SMD) and 95% confidence interval. All related statistical analyses were performed using Comprehensive Meta-Analysis (CMA) software. RESULTS: A total of 13 articles were incorporated into the final meta-analysis. According to the current meta-analysis, curcumin plus piperine administration showed a significantly increased SOD activity and GSH levels while significantly decreased MDA concentrations. In addition, our study revealed that curcumin plus piperine significantly decreased TNF-α and IL-6 concentrations. CONCLUSION: These results indicated that curcumin plus piperine administration could effectively reduce oxidative stress and inflammation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38483577

RESUMEN

Applying nanotechnology to design drug delivery systems is a promising turning point in cancer treatment strategies. In the current study, Lawson, a nonpolar anticancer phytochemical, was entrapped into ß-cyclodextrin polymer to evaluate its selective cytotoxicity in several types of human cancer cell lines including MCF-7, AGS, A549, and PC3. The Lawson-loaded ß-cyclodextrin nanocarriers (LB-NCs) were produced by applying a high-energy ultrasound-mediated homogenization technique. The LB-NCs were characterized by applying dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential, and field emission scanning electron microscopy (FESEM) analysis. Also, the selective cytotoxic impact of the LB-NCs was studied by conducting the MTT assay on human MCF-7, AGS, A549, and PC3 cancer cell lines. Finally, the type of cellular death was evaluated by measuring the cell cycle status and apoptotic gene expression profile of the treated MCF-7 cells by conducting flow cytometry and Q-PCR methods, respectively. The synthesized negatively charged (- 23.8 mV) nanoparticles (348.12 nm) exhibited apoptotic activity in the human breast MCF-7 cancer cells by upregulating the apoptotic gene expression profile (Caspase 3, 8, and 9). The LB-NCs exhibited a significant selective cytotoxic effect on the human cancer cell lines compared with the normal HUVEC cells. However, variable toxic intensities were detected depending on the cancer cell type. Selective cancer cell-depended anticancer activity of the produced LB-NCs has the potential to be considered their safe efficient targeted anticancer activity. However, studying the animal cancer models has to be conducted to verify their selective toxicity and clarify the cellular death mechanism.

5.
Mol Biol Rep ; 51(1): 85, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183506

RESUMEN

BACKGROUND: Urolithin B (UB), the antioxidant polyphenol has a protective impact on several organs against oxidative stress. However, its bioactivity is limited by its hydrophobic structure. In the current study, UB was encapsulated into a liposomal structure to improve its bioactivities anticancer, and antimicrobial potential. METHOD: The UB nano-emulsions (UB-NE) were synthesized and characterized utilizing FESEM, DLS, FTIR, and Zeta-potential analysis. The UB-NMs' selective toxicity was studied by conducting an MTT assay on MCF-7, PANC, AGS, and ASPC1 cells. The AO/PI analysis verified the UB-NMs' cytotoxicity on ASPC1 cell lines and approved the MTT results. Finally, the antibacterial activity of the UB-NMs was studied on both gram-positive (B. subtilis, S. aureus) and gram-negative (E. Coli, P. aeruginosa) bacteria by conducting MIC and MBC analysis. RESULT: The 68.15 nm UB-NMs did not reduce the normal HDF cells' survival. However, they reduced the cancer cells' (PANC and AGS cell lines) survival at high treatment concentrations (> 250 µg/mL) compared with normal HDF and cancer MCF-7 cells. Moreover, the IC50 doses of UB-NMs for the ASPC1 and PANC cancer cells were measured at 44.87, and 221.02 µg/mL, respectively. The UB-NMs selectively exhibited apoptotic-mediated cytotoxicity on the human pancreatic tumor cell line (ASPC1) by down-regulating BCL2 and NFKB gene expression. Also, the BAX gene expression was up-regulated in the ASPC1-treated cells. Moreover, they exhibited significant anti-bactericidal activity against the E. coli (MIC = 50 µg/mL, MBC = 150 µg/mL), P. aeruginosa (MIC = 75 µg/mL, MBC = 275 µg/mL), B. subtilis (MIC = 125 µg/mL, MBC = 450 µg/mL), and S. aureus (MIC = 50 µg/mL, MBC = 200 µg/mL) strains. CONCLUSION: The significant selective cytotoxic impact of the UB-NMs on the human pancreatic tumor cell line makes it an applicable anti-pancreatic cancer compound. Moreover, the antibacterial activity of UB-NMs has the potential to decrease bacterial-mediated pancreatic cancer. However, several bacterial strains and further cancer cell lines are required to verify the UB-NMs' anticancer potential.


Asunto(s)
Escherichia coli , Neoplasias Pancreáticas , Humanos , Staphylococcus aureus , Antibacterianos/farmacología , Células MCF-7
6.
Iran J Basic Med Sci ; 27(2): 180-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234667

RESUMEN

Objectives: Harmaline and green-synthesized silver nanoparticles were encapsulated by folate-linked chitosan molecules as a receptor-mediated drug delivery system to evaluate its pro-apoptotic and anti-metastatic potentials on human ovarian (A2780) and epithelioid (PANC) cancer cells. Materials and Methods: The Ag nanoparticles (AgNP) were synthesized utilizing an herbal bio-platform (Bistorta officinalis) and embedded with harmalin. The Harmaline-ag containing folate-linked chitosan nanoparticles (HA-fCNP) were synthesized utilizing the ionic gelation method. Both the AgNP and HA-fCNP nanoparticles were characterized by DLS, FESEM, and Zeta potential analysis. Moreover, the chemical properties of HA-fCNP and the crystallinity of AgNPs were determined by applying FTIR and XRD methods, respectively. The HA-fCNP cytotoxicity was analyzed on A2780, PANC, and HFF cell lines. Moreover, pro-apoptotic and anti-metastatic potentials of HA-fCNP were studied by analyzing the BAX-BCL2 and MMP2-MMP9 gene expression profiles, respectively. The A2780 cellular death was determined by AO/PI and flow cytometry methods. Results: The HA-fCNP significantly exhibited a selective cytotoxic impact on A2780 and PANC cancerous cell lines compared with normal human foreskin fibroblast (HFF) cells. The increased SubG1-arrested A2780 cells and up-regulated BAX gene expression following the increased treatment concentrations of hA-fCNP indicated its selective pro-apoptotic activity on A2780 cells. Also, the notable down-regulated expressions of MMP2 and MMP9 metastatic genes following the increasing doses of HA-fCNP treatment on A2780 cells confirmed its anti-metastatic activity. Conclusion: The cancer-selective cytotoxicity, apoptotic, and anti-metastatic properties of HA-fCNP are considered the appropriate properties of an anticancer compound.

7.
Curr Med Chem ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38265398

RESUMEN

BACKGROUND: Metabolic syndrome is a multifactorial disorder and genetics, lifestyle, and aging play important roles in its prevalence. Nigella sativa has several pharmacological benefits, including anti-inflammatory, antitumor, anti-diabetic, antioxidant, and hypolipidemic effects. This meta-analysis of randomized controlled trials assesses the effect of N. sativa consumption on lipid profile and glycemic indices in patients with metabolic syndrome. METHODS: We systematically researched Cochrane Library, PubMed, Scopus, and Web of Science databases. The literature research identified 171 studies with duplication. Of those, 73 articles were screened for titles and abstracts, and 7 studies were finally selected for the meta-analysis. Because of the high degree of heterogeneity, we performed subgroup analyses based on the dose of N. sativa (<=500 mg/day or >500 mg/day). RESULTS: The results revealed that N. sativa intake significantly decreased total cholesterol (SMD: -0.71; 95% CI, -1.44 to -0.38; P = 0.00), LDL-C (SMD: -1.06; 95% CI, -1.45 to -0.66; P = 0.00) and HDL-C (SMD: -0.31; 95% CI, 0.09 to 0.53; P = 0.01) concentrations. In addition, N. sativa significantly decreased FBS (SMD: -0.8; 95% CI, -1.21 to -0.39; P = 0.00) and HbA1c (SMD: -0.37; 95% CI, -0.66 to -0.09; P = 0.01) concentrations. No publication bias was observed, and sensitivity analysis showed stable results. CONCLUSION: The current systematic review and meta-analysis indicates that N. sativa could improve lipid profile and glycemic index in patients with metabolic syndrome.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2133-2143, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37787784

RESUMEN

Oxypeucedanin (OPD) as a powerful anti-proliferative agent found in the Angelicae dahuricae has been used to suppress cancer cell growth. However, the hydrophobic chemical structure has limited its solubility and bio-accessibility. This is the first time OPD is encapsulated into a nano-liposomal structure and coated with poly-cationic chitosan polymer as the oxypeucedanin drug delivery system to evaluate its antioxidant and anti-colon cancer potential. The chitosan-coated oxypeucedanin nano-chitosomes (COPD-NCs) were synthesized utilizing the thin-layer hydration method and characterized by FESEM, DLS, FTIR, and zeta potential analysis. The anti-cancer potential of COPD-NC was analyzed by measuring the cell survival rate (MTT assay) and studying the cellular death type (AO/PI staining) following the increased treatment concentrations of COPD-NC on the HT-29 colon cancer cell line. Moreover, the COPD-NCs' apoptotic activity was verified by analyzing Cas-3 and Cas-9 gene expression profiles. Finally, the COPD-NCs' antioxidant activity was evaluated by applying ABTS, DPPH, and FRAP antioxidant assays. The 258.26-nm COPD-NCs significantly inhibited the HT-29 colon cancer cells compared with the normal fibroblast HFF cells. The up-regulated Cas-3 and Cas-9 gene expression exhibited the COPD-NCs' apoptotic activity. Also, the COPD-NCs' apoptotic activity was verified by detecting the increased apoptotic bodies following the AO/PI fluorescent staining in the increased exposure doses of COPD-NCs. Ultimately, the COPD-NCs meaningfully inhibited the ABTS-DPPH radicals and exhibited an appropriate FRAP-reductive potential. The designed nanostructure for COPD-NCs significantly improved its antioxidant potential and selective cytotoxicity on human HT-29 human cancer cells, which makes them a safe selective natural drug delivery system. Therefore, the COPD-NCs can selectively induce apoptotic death in human HT-29 cancer cells and have the potential to be studied as an anti-colon cancer compound. However, further cancer and normal cell lines are required to verify their selective cytotoxicity.


Asunto(s)
Benzotiazoles , Quitosano , Neoplasias del Colon , Furocumarinas , Enfermedad Pulmonar Obstructiva Crónica , Ácidos Sulfónicos , Humanos , Quitosano/química , Antioxidantes , Células HT29
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4435-4445, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38108837

RESUMEN

An anticancer agent derived from a natural product, parthenolide (PN), was studied to formulate PN into poly(lactic-co-glycolic acid) (PLGA). Polydopamine (PDA) was employed to modify the surface of PN-PLGA. Following characterization, the PN-PLGA-PDA was evaluated for its in vitro release, cytotoxicity, and ability to induce apoptosis using flow cytometry and real-time quantitative PCR. According to the present study, PN-PLGA-PDA had a size of 195.5 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. The SEM results confirmed the size and spherical shape of the nanoparticles. The percentage of encapsulation efficiency was 96.9%. The zeta potential of PN-PLGA-PDA was - 31.8 mV which was suitable for its stability. FTIR spectra of the PN-PLGA-PDA indicated the chemical stability of the PN due to intermolecular hydrogen bonds between polymer and drug. The release of PN from PN-PLGA-PDA in PBS (pH 7.4) was only 20% during the first 48 h and less than 40% during 144 h. PN-PLGA-PDA exhibited anticancer properties in a dose-dependent manner that was more cytotoxic against cancer cells than normal cells. Moreover, real-time qPCR results indicated that the formulation activated apoptosis genes to exert its cytotoxic effect and activate the NF-kB pathway. Based on our findings, PN-PLGA-PDA could serve as a potential treatment for cancer.


Asunto(s)
Apoptosis , Indoles , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Sesquiterpenos , Neoplasias Gástricas , Apoptosis/efectos de los fármacos , Humanos , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Línea Celular Tumoral , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/administración & dosificación , Polímeros/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanopartículas/química , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Ácido Poliglicólico/química , Ácido Láctico/química , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , FN-kappa B/metabolismo
10.
Drug Dev Ind Pharm ; 49(10): 658-665, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37814890

RESUMEN

BACKGROUND: Kaempferol, the natural bioactive flavonoid, has been utilized as an efficient anti-breast cancer compound. In the current study, the Kaempferol's cellular uptake and its aqueous solubility were improved by using human serum albumin (HSA) as the Kaempferol adjuvant and encapsulating it with the folate-linked chitosan polymer to evaluate the apoptotic, activity of the novel-formulated Kaempferol in human MCF-7 breast cancer cells. METHODS: The folate-linked chitosan-coated Kaempferol/HSA nano-transporters (FCKH-NTs) were synthesized and characterized using FTIR, FESEM, DLS, and Zeta potential analysis. The nano-transporters' selective cytotoxicity was studied by applying an MTT assay on the cancerous MCF-7 cells compared with normal HFF cell lines. Cell death type determination was determined by analyzing the expression of apoptotic (BAX and Cas-8) and anti-apoptotic genes (BCL2 and NF-κB). The FCKH-NTs apoptotic activity was verified by studying the flow cytometry and AO/PI staining results. RESULT: The 126-nm FCKH-NTs (PDI = 0.282) selectively induced apoptotic death in human MCF-7 breast cancer cells by up-regulating the BAX, Nf- κB, and Cas-8 gene expression. The apoptotic activity of FCKH-NTs was verified by detecting the SubG1-arrested cancer cells and increased apoptotic bodies in AO/PI staining images. CONCLUSION: The FCKH-NTs exhibited a selective-cytotoxic impact on human MCF-7 breast cancer cells compared with normal HFF cells, which can be due to the folate receptor-mediated endocytosis mechanism of the nano-transporters. Therefore, the FCKH-NTs have the potential to be used as a selective anti-breast cancer compound.


Asunto(s)
Neoplasias de la Mama , Quitosano , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Quempferoles/farmacología , Albúmina Sérica Humana , Proteína X Asociada a bcl-2 , Ácido Fólico , Apoptosis
11.
Heliyon ; 9(9): e20042, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809932

RESUMEN

Background: Herniarin, a simple coumarin found in chamomile leaf rosettes is known as the oxidative stress protector. In the current study, herniarin was captured into Graphene oxide nanoparticles and coated with chitosan poly-cationic polymer to be used as a novel bio-compatible nano-drug delivery system and investigate its antioxidant, anti-angiogenic and anti-cancer impacts on human lung A549 cancer cells. Method: The Chitosan-coated Herniarin-Graphene oxide nanoparticles (CHG-NPs) were designed, produced, and characterized utilizing DLS, FESEM, FTIR, and Zeta-potential analysis. The CHG-NPs' antioxidant activity was analyzed by conducting ABTS and DPPH antioxidant assays. The CHG-NPs' anti-angiogenic activity was analyzed by CAM assay and verified by measuring VEGF and VEGFR gene expression levels following their increased treatment doses by applying Q-PCR technique. Finally, the CHG-NPs' cytotoxicity was studied in the human lung A549 cancer cells. Result: The stable (+27.11 mV) 213.6-nm CHG-NPs significantly inhibited the ABTS/DPPH free radicals and exhibited antioxidant activity. The suppressed angiogenesis process in the CAM vessels was observed by detecting the decreased length/number of the vessels. Moreover, the down-regulated VEGF and VEGFR gene expression of the CAM blood vessels following the increased CHG-NPs treatment doses verified the nanoparticles' anti-angiogenic potential. Finally, the CHG-NPs significantly exhibited a selective cytotoxic impact on human A549 cancer cells compared with the normal HFF cell line. Conclusion: The selective cytotoxicity, strong antioxidant activity, and significant anti-angiogenic property of the nano-scaled produced CHG-NPs make it an appropriate anticancer nano-drug delivery system. Therefore, the CHG-NPs have the potential to be used as a selective anti-lung cancer compound.

12.
Mol Biol Rep ; 50(11): 8971-8983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715021

RESUMEN

PURPOSE: Targeted Graphene Oxide (GO) nanoparticles can play an important role in the treatment of cancer by increasing cancer cell targeting. This study was conducted to synthesize GO nanoparticles functionalized with chitosan-folate (CS-FA) to deliver a natural product Lawsone (LA) for cancer treatment. METHODS: After characterization of the LA-GO-CS-FA, antioxidant activities of the nanoparticles were investigated by ABTS, DPPH, and FRAP tests. CAM assay was used to study the effect of nanoparticles on angiogenesis. The expression level of inflammatory and angiogenic genes in cells treated with nanoparticles was evaluated by real-time PCR. RESULTS: The findings demonstrated the formation of nanoparticles with a size of 113.3 nm, a PDI of 0.31, and a surface charge of + 11.07 mV. The percentages of encapsulation efficiency were reported at 93%. Gastric cancer cells were reported as the most sensitive to treatment compared to the control, and the gastric cancer cells were used to study gene expression changes. The anti-angiogenic effects of nanoparticles were confirmed by reducing the average number and length of blood vessels and reducing the height and weight of embryos in the CAM assay. The reducing the expression of genes involved in angiogenesis in real-time PCR was demonstrated. Nanoparticles displayed high antioxidant properties by inhibiting DPPH and ABTS radicals and reducing iron ions in the FRAP method. The reduction of pro-inflammatory genes in AGS cells which were treated with nanoparticles indicates the anti-inflammatory properties of nanoparticles. CONCLUSION: This study showed the efficacy of nanoparticles in inhibiting gastric cancer cells by relying on inhibiting angiogenesis.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias Gástricas , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Neoplasias Gástricas/tratamiento farmacológico , Nanopartículas/química
13.
Mol Biotechnol ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633875

RESUMEN

Quetiapine (QTP) has been known to suppress cancer progression in patients suffering from mental disorders. This study aimed to produce the folate-linked chitosan-coated quetiapine/BSA nano-carriers (FCQB-NCs) and evaluate their antioxidant, apoptotic, and anti-metastatic potentials on prostate, pancreas, colon, and breast cancer cell lines. The FCQB-NCs were designed, produced, and characterized using DLS, FESEM, FTIR, and Zeta potential techniques. The nano-carriers antioxidant activity was studied by applying ABTS, DPPH, and FRAP assays. The FCQB-NCs' cytotoxicity and apoptotic/metastatic properties were evaluated utilizing MTT assay and qPCR-based analysis for measuring the apoptotic (Nf-KB)/metastatic (MMP2, MMP9, and MMP13) gene expression, respectively. The AO/PI fluorescent cell staining, DAPI staining, and scratch assay methods were conducted to verify the apoptotic and anti-metastatic activities of FCQB-NCs. The 51-nm FCQB-NCs (PDI = 0.26) exhibited antioxidant activity and selectively decreased the MDA-MB-231 cancer cells' viability by inducing Nf-KB overexpression, which caused the apoptosis pathway activation. Moreover, the FCQB-NCs suppressed the MDA-MB-231 cells' metastatic activity by down-regulating the MMP2, MMP9, and MMP13 gene expression, verified by detecting the decreased migration rate. The FCQB-NCs selectively induced apoptosis and suppressed metastasis in the human breast cancer cell line, which can be attributed to the stepwise release of QTP in two primary (extra-cellular release) and secondary (intra-cellular release) phases. The efficient selective cytotoxic impact of FCQB-NCs can be due to the novel stepwise release mechanism of the FCQB-NCs based on the two-phase entrapment of QTP by BSA and chitosan molecules. Therefore, FCQB-NCs have the potential to be used as an efficient selective anti-breast cancer.

14.
Phytochem Anal ; 34(8): 950-958, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37463671

RESUMEN

OBJECTIVES: Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS: The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS: The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION: CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.


Asunto(s)
Quitosano , Curcumina , Glioblastoma , Nanopartículas , Curcumina/farmacología , Curcumina/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Catalasa , Quitosano/metabolismo , Quitosano/uso terapéutico , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapéutico , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/uso terapéutico , Ácido Fólico/uso terapéutico , Oxidación-Reducción , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/uso terapéutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapéutico
15.
IET Nanobiotechnol ; 17(5): 425-437, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191102

RESUMEN

The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC50 ) against Panc-1 cells was calculated 118.4 µL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Quitosano/química , Ácido Poliglicólico/química , Ácido Fólico/química , Ácido Láctico/química , Ácido Láctico/farmacología , Glicoles/farmacología , Proteína X Asociada a bcl-2/farmacología , Apoptosis , Nanopartículas/química , Portadores de Fármacos/química
16.
J Biomater Sci Polym Ed ; 34(11): 1603-1617, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755525

RESUMEN

Tyrosol (TYR) and parthenolide (PLT) have been used as synthetic antioxidant and natural anticancer compounds. In the current study, we aimed to synthesize an encapsulated complex of both PLT and TYR in a hybrid coating layer consisting of lecithin and chitosan molecules, a proper biocompatible drug delivery system to evaluate its antibacterial and anticancer potentials on human liver HepG2 and pancreatic Panc cancer cell lines. The chitosan-lecithin-coated PLT/TYR nanoparticles (clPT-NPs) were synthesized applying an auto-self-assembling method. The clPT-NPs were characterized utilizing DLS, FTIR, zeta potential, and TEM analysis. The clPT-NPs' antioxidant activity was measured by running ABTS and DPPH antioxidant assays. Moreover, the antibacterial potential of clPT-NPs was evaluated by applying disk diffusion, MIC, and MBC assays. Finally, the nanoparticles' cytotoxicity and apoptotic activity were studied by conducting MTT, Flow cytometry, AO/PI cell staining, and real-time PCR techniques. The clPT-NPs (38 nm) exhibited significant antioxidant activity by inhibiting ABTS and DPPH radicals at 187 and 290 µg/mL IC50 concentrations, respectively. Also, the nanoparticles induced a notable antibacterial activity against Staphylococcus aureus at 0.0625 mg/mL MIC and 0.125 mg/mL MBC concentrations. The clPT-NPs selectively decreased the cancer cells' survival and increased the apoptotic dead cells by up-regulating apoptotic gene expression (BAX and Cas-8) and down-regulating BCL-2 anti-apoptotic gene expression. The PLT toxicity has been merged with improved TYR antioxidant activity, which has been functionalized in a safe, biocompatible hybrid nano-delivery system.


Asunto(s)
Antibacterianos , Antineoplásicos , Antioxidantes , Quitosano , Lecitinas , Nanopartículas , Humanos , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Nanopartículas/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/genética , Staphylococcus aureus/efectos de los fármacos
17.
Sleep Breath ; 27(4): 1237-1245, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322225

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA), a sleep-related disorder with high prevalence, is associated with an imbalance in oxidative stress and is linked to cardiovascular disease. There are conflicting reports regarding the effectiveness of continuous positive airway pressure (CPAP) therapy on oxidative stress/antioxidant markers in patients with OSA. This review was performed to evaluate the influence of therapy with CPAP on serum/plasma total antioxidant capacity (TAC) in patients with OSA. METHODS: The Cochrane Library, Web of Science, Scopus, Embase, and PubMed were searched through June 2022 to obtain studies evaluating CPAP treatment on TAC in patients with OSA. Overall results were tested using standardized mean difference (SMD) with a 95% confidence interval (CI). Comprehensive Meta-Analysis V2 software was employed to perform analyses. RESULTS: Ten studies with 12 effect sizes were eligible for inclusion in this analysis. The overall SMD revealed that CPAP therapy significantly increased TAC [SMD 0.497; 95% CI: 0.21 to 0.77; p: 0.00] in OSA. Analyses based on subgroups showed that the effect of CPAP therapy was significant in all subgroups according to therapy duration, age, BMI, and AHI. Whereas the meta-regression results indicated that the impact of therapy with CPAP on TAC is associated with AHI, BMI, and age in patients with OSA. CONCLUSIONS: The finding of this meta-analysis demonstrated a favorable impact of CPAP therapy on TAC levels in patients suffering from OSA.


Asunto(s)
Enfermedades Cardiovasculares , Apnea Obstructiva del Sueño , Humanos , Presión de las Vías Aéreas Positiva Contínua/efectos adversos , Antioxidantes , Enfermedades Cardiovasculares/etiología , Duración de la Terapia
18.
J Biomater Sci Polym Ed ; 34(1): 1-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35864733

RESUMEN

This survey was conducted to fabrication of PLGA-based nanosystems modified with PEG, chitosan and folic acid to delivery colchicine to cancer cells and to investigate its antioxidant and pro-apoptotic effects. The dual emulsion-evaporation solvent method was used for loading of colchicine on PEGylated PLGA nanoparticles (COL-PP-NPs) and after surface modification with chitosan and folic acid (COL-PPCF-NPs), the nanoparticles were characterized by DLS, SEM and FTIR methods. The HPLC procedure was used to assess the amount of FA binding and COL loading. Antioxidant capacity (ABTS and DPPH free radical scavenging) and toxicity (MTT) of COL-PPCF-NPs were evaluated and then cell inhibition mechanism was assessed by AO/PI staining, flow cytometry and qPCR assay. COL-PPCF-NPs with a size of 250 nm were synthesized in a stable (zeta potential: +34 mV) and mono-dispersed (PDI: 0.32) manner. FA binding and COL loading were reported to be 55% and 89.5%, respectively. COL-PPCF-NPs showed antioxidant effects by inhibiting the free radicals ABTS (108.07 µg/ml) and DPPH (361.61 µg/ml). The selective toxicity of COL-PPCF-NPs against HT-29 cancer cells (118.5 µg/ml) compared to HFF cells was confirmed by MTT data. Increased apoptotic cells (red color) in AO/PI staining, cell arrest in phase SubG1 and G2-M, and altered expression of apoptosis genes confirmed the occurrence of apoptosis in HT-29 treated cells. The use of PPCF-NPs system for delivery of COL can lead to selective toxicity against cancer cells and induction of apoptosis in these cells by folate-mediated binding mechanism at folate receptor positive HT-29 cancer cells.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Quitosano/química , Colchicina , Ácido Fólico/química , Antioxidantes/farmacología , Nanopartículas/química , Tamaño de la Partícula
19.
J Biomater Sci Polym Ed ; 34(6): 791-809, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345914

RESUMEN

Synthesis of targeted nanostructure lipid carriers for stylosin (STY-CFN-NPs) delivery to MCF-7 cells. STY-CFN-NPs were formulated via the homogenization and ultra-sonication technique. After evaluating the amount of drug encapsulation and FA binding, the toxicity effect of the STY and STY-CFN-NPs on MCF-7 cells was measured by the MTT method. Cell cycle analysis, AO/PI staining and qPCR to assess the inducing of apoptosis as well as Tubo cancer cell inoculated mouse model for antitumor properties of STY-CFN-NPs were used. Significant increases in nanoparticle size and changes in zeta potential were observed after FA-CS coating on nanoparticles. Slow release of the STY within 144 h as well as the acceptable rate for STY encapsulation efficiency (92.4% and FA binding (52.5%) to the STY-CFN-NPs (PS: 66.26 ± 3.02 nm, ZP: 29.54 ± 1.01 mV and PDI: 0.32 ± 0.01) was reported. STY-CFN-NPs exhibited higher toxicity compared to STY suspension and treatment with STY-CFN-NPs was lead to increased apoptotic cells, stopped cells in the SubG1 phase, and also increased caspase and BAX expression and decreased BCL-2 and BCL-XL expression in in vitro and decreased the size of murine tumors (54.57% in 16 days) in in vivo. The results showed STY-CFN-NPs have good potential for breast cancer management.


Asunto(s)
Quitosano , Nanopartículas , Nanoestructuras , Ratones , Animales , Quitosano/química , Ácido Fólico/química , Nanopartículas/química , Lípidos , Portadores de Fármacos/química , Tamaño de la Partícula
20.
J Biomater Sci Polym Ed ; 34(3): 315-333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36063019

RESUMEN

The aim of this survey was to load Chrysin (CHY) on solid lipid nanoparticles (SLNs) and decorate the nanoparticles with folate-bound chitosan to increase the effectiveness of the treatment. CHY-SCF-NPs were synthesized by homogenizing and sonication methods and characterized. FA binding and encapsulation efficiency (HPLC), antioxidant capacity (ABTS and DPPH), cell viability assay (MTT), programmed cell death analysis (fluorescence staining, flow cytometry, and qPCR), and angiogenesis (CAM and molecular analysis) assay were done for assessment of therapeutic efficiency of CHY-SCF-NPs. Increases in size and change in surface charge of CHY-SLNs (PS: 84.3 nm and ZP: -18 mV) were reported after coating with folate-bound chitosan (PS: 125 nm and ZP: +34.9 mV). CHY-SCF-NPs inhibited PANC, MCF-7, A2780, and HepG2 as malignant cells and HFF as normal cells with IC50∼53, 55, 249, and >250 µg/mL, respectively. Also, CHY-SCF-NPs scavenged ABTS (IC50: 123.73 µg/mL), and DPPH (IC50: 108.7 µg/mL) free radicals and suppressed angiogenesis in the CAM and qPCR assays. Up-regulation of Bax and caspase 9 genes as well as the fluorescence staining and cell cycle results confirmed the pro-apoptotic properties of CHY-SCF-NPs. CHY-SCF-NPs can be considered a promising anti-cancer candidate for preclinical and clinical studies of pancreatic cancer.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Quitosano/química , Ácido Fólico/química , Nanopartículas/química , Portadores de Fármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA