Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(10): 2608-2620, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38472066

RESUMEN

The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Vacunas , Viola , Porcinos , Animales , Ratones , Oro/química , Quitosano/química , Nanopartículas/química , Polisacáridos , Citocinas , Inmunoglobulina G
2.
Int J Biol Macromol ; 257(Pt 2): 128670, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070794

RESUMEN

In this study, a novel nano-drug delivery system (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Myricaria germanica polysaccharide (MGP) was developed to enhance immune responses. At a MGP to CS Au ratio of 5:1, CS-Au-MGP NPs had a loading capacity of 78.27 %. The structure of CS-Au-MGP NPs were characterized by Transmission electron microscope, TEM-energy dispersive spectroscopy mapping, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, particle size and zeta-potential distribution analysis. Under weakly acidic conditions, in vitro CS-Au-MGP NPs release was most effective. In vivo showed that co-immunization with CS-Au-MGP NPs and PCV2 significantly increased the organ index of the thymus, spleen, and liver in mice. Additionally, CS-Au-MGP NPs significantly increased the levels of IgG, IgG1, and IgG2a antibodies, as well as IFN-γ and IL-6 levels. Furthermore, the CS-Au-MGP NPs promoted proliferation of spleen T and B lymphocytes, increased the number of CD3+, CD4+, and CD8+ cells, and increased the CD4+/CD8+ T cell ratio. Meanwhile, CS-Au-MGP NPs remarkably TLR2/IRAK4 pathway activation and mRNA levels of cytokines (IFN-γ and IL-6). These results indicated that CS-Au-MGP NPs could enhance the immune activity, and it could be potentially used as an MGP delivery system for the induction of strong immune responses.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Ratones , Animales , Quitosano/química , Oro/química , Interleucina-6 , Nanopartículas/química , Polisacáridos/farmacología , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA