Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
2.
Nat Cell Biol ; 25(9): 1346-1358, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591951

RESUMEN

Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Histona Demetilasas/genética , Cromatina , Epigenómica , Neoplasias Pulmonares/genética
3.
Cancer Res ; 82(2): 248-263, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810201

RESUMEN

Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) NOTCH mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth. Given the dual functionality of NOTCH, it is not understood why SCLCs select for LOF NOTCH mutations and how these mutations affect SCLC tumorigenesis. In a CRISPR-based genetically engineered mouse model of SCLC, genetic loss of Notch1 or Notch2 modestly accelerated SCLC tumorigenesis. Interestingly, Notch-mutant SCLCs still formed nonneuroendocrine subpopulations, and these Notch-independent, nonneuroendocrine subpopulations were driven by Runx2-mediated regulation of Rest. Notch2-mutant nonneuroendocrine cells highly express innate immune signaling genes including stimulator of interferon genes (STING) and were sensitive to STING agonists. This work identifies a Notch-independent mechanism to promote nonneuroendocrine plasticity and suggests that therapeutic approaches to activate STING could be selectively beneficial for SCLCs with NOTCH2 mutations. SIGNIFICANCE: A genetically engineered mouse model of NOTCH-mutant SCLC reveals that nonneuroendocrine plasticity persists in the absence of NOTCH, driven by a RUNX2-REST-dependent pathway and innate immune signaling.


Asunto(s)
Plasticidad de la Célula/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Sistemas CRISPR-Cas , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Mutación con Pérdida de Función , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Receptor Notch1/genética , Receptor Notch2/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Transfección
4.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33707236

RESUMEN

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Asunto(s)
Plasticidad de la Célula , Neoplasias Pulmonares/inmunología , Carcinoma Pulmonar de Células Pequeñas/inmunología , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Registros Electrónicos de Salud , Humanos , Neoplasias Pulmonares/patología , Ratones , Carcinoma Pulmonar de Células Pequeñas/patología
5.
J Cell Physiol ; 235(10): 7261-7272, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32180230

RESUMEN

Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFß1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFß for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.


Asunto(s)
Neoplasias de la Mama/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Ratones SCID , Células Madre Neoplásicas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
7.
J Cell Physiol ; 235(6): 5318-5327, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31919859

RESUMEN

Despite recent advances in targeted therapies, the molecular mechanisms driving breast cancer initiation, progression, and metastasis are minimally understood. Growing evidence indicate that transfer RNA (tRNA)-derived small RNAs (tsRNA) contribute to biological control and aberrations associated with cancer development and progression. The runt-related transcription factor 1 (RUNX1) transcription factor is a tumor suppressor in the mammary epithelium whereas RUNX1 downregulation is functionally associated with breast cancer initiation and progression. We identified four tsRNA (ts-19, ts-29, ts-46, and ts-112) that are selectively responsive to expression of the RUNX1 tumor suppressor. Our finding that ts-112 and RUNX1 anticorrelate in normal-like mammary epithelial and breast cancer lines is consistent with tumor-related activity of ts-112 and tumor suppressor activity of RUNX1. Inhibition of ts-112 in MCF10CA1a aggressive breast cancer cells significantly reduced proliferation. Ectopic expression of a ts-112 mimic in normal-like mammary epithelial MCF10A cells significantly increased proliferation. These findings support an oncogenic potential for ts-112. Moreover, RUNX1 may repress ts-112 to prevent overactive proliferation in breast epithelial cells to augment its established roles in maintaining the mammary epithelium.


Asunto(s)
Neoplasias de la Mama/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ARN de Transferencia/genética , ARN/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Supresoras de Tumor/genética
8.
Nat Commun ; 11(1): 338, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953400

RESUMEN

Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective targeted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor (AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C suppresses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4 and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tissues, MUC1 expression associates with suppression of AR signaling and increases in BRN2 expression and NEPC score. These results highlight MUC1-C as a master effector of lineage plasticity driving progression to NEPC.


Asunto(s)
Carcinoma Neuroendocrino/metabolismo , Progresión de la Enfermedad , Mucina-1/metabolismo , Plasticidad Neuronal/fisiología , Neoplasias de la Próstata/metabolismo , Animales , Aurora Quinasa A/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinoma Neuroendocrino/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Desnudos , Mucina-1/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteínas Proto-Oncogénicas c-myc , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Sinaptofisina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
9.
Oncogene ; 38(47): 7278, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31576011

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Cancer Res ; 79(22): 5711-5722, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31519689

RESUMEN

The NuRD chromatin remodeling and deacetylation complex, which includes MTA1, MBD3, CHD4, and HDAC1 among other components, is of importance for development and cancer progression. The oncogenic mucin 1 (MUC1) C-terminal subunit (MUC1-C) protein activates EZH2 and BMI1 in the epigenetic reprogramming of triple-negative breast cancer (TNBC). However, there is no known link between MUC1-C and chromatin remodeling complexes. Here, we showed that MUC1-C binds directly to the MYC HLH-LZ domain and identified a previously unrecognized MUC1-C→MYC pathway that regulates the NuRD complex. MUC1-C/MYC complexes selectively activated the MTA1 and MBD3 genes and posttranscriptionally induced CHD4 expression in basal- but not luminal-type BC cells. In turn, MUC1-C formed complexes with these NuRD components on the ESR1 promoter. Downregulating MUC1-C decreased MTA1/MBD3/CHD4/HDAC1 occupancy and increased H3K27 acetylation on the ESR1 promoter, with induction of ESR1 expression and downstream estrogen response pathways. Targeting MUC1-C and these NuRD components also induced expression of FOXA1, GATA3, and other markers associated with the luminal phenotype. These findings support a model in which MUC1-C activates the NuRD complex to drive dedifferentiation and reprogramming of TNBC cells. SIGNIFICANCE: MUC1-C directly interacts with MYC to activate the NuRD complex, mediating regulation of the estrogen receptor in triple-negative breast cancer cells.


Asunto(s)
Diferenciación Celular/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mucina-1/genética , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Regulación hacia Abajo/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Regiones Promotoras Genéticas/genética
11.
Oncogene ; 38(47): 7266-7277, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31435022

RESUMEN

RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b (DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1, and DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK signaling.


Asunto(s)
Carcinoma/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Mucina-1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Humanos
12.
Mol Cancer Ther ; 18(10): 1744-1754, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308076

RESUMEN

The oncogenic MUC1-C protein and the TWIST1 epithelial-mesenchymal transition transcription factor (EMT-TF) are aberrantly expressed in triple-negative breast cancer (TNBC) cells. However, there is no known association between MUC1-C and TWIST1 in TNBC or other cancer cells. Here, we show that MUC1-C activates STAT3, and that MUC1-C and pSTAT3 drive induction of the TWIST1 gene. In turn, MUC1-C binds directly to TWIST1, and MUC1-C/TWIST1 complexes activate MUC1-C expression in an autoinductive circuit. The functional significance of the MUC1-C/TWIST1 circuit is supported by the demonstration that this pathway is sufficient for driving (i) the EMT-TFs, ZEB1 and SNAIL, (ii) multiple genes in the EMT program as determined by RNA-seq, and (iii) the capacity for cell invasion. We also demonstrate that the MUC1-C/TWIST1 circuit drives (i) expression of the stem cell markers SOX2, BMI1, ALDH1, and CD44, (ii) self-renewal capacity, and (iii) tumorigenicity. In concert with these results, we show that MUC1-C and TWIST1 also drive EMT and stemness in association with acquired paclitaxel (PTX) resistance. Of potential therapeutic importance, targeting MUC1-C and thereby TWIST1 reverses the PTX refractory phenotype as evidenced by synergistic activity with PTX against drug-resistant cells. These findings uncover a master role for MUC1-C in driving the induction of TWIST1, EMT, stemness, and drug resistance, and support MUC1-C as a highly attractive target for inhibiting TNBC plasticity and progression.


Asunto(s)
Mucina-1/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Línea Celular Tumoral , Autorrenovación de las Células/efectos de los fármacos , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína 1 Relacionada con Twist/genética
13.
Cancer Res ; 79(8): 2031-2041, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30824588

RESUMEN

The oncogenic MUC1-C protein is overexpressed in triple-negative breast cancer (TNBC) cells and contributes to their epigenetic reprogramming and chemoresistance. Here we show that targeting MUC1-C genetically or pharmacologically with the GO-203 inhibitor, which blocks MUC1-C nuclear localization, induced DNA double-strand breaks and potentiated cisplatin (CDDP)-induced DNA damage and death. MUC1-C regulated nuclear localization of the polycomb group proteins BMI1 and EZH2, which formed complexes with PARP1 during the DNA damage response. Targeting MUC1-C downregulated BMI1-induced H2A ubiquitylation, EZH2-driven H3K27 trimethylation, and activation of PARP1. As a result, treatment with GO-203 synergistically sensitized both mutant and wild-type BRCA1 TNBC cells to the PARP inhibitor olaparib. These findings uncover a role for MUC1-C in the regulation of PARP1 and identify a therapeutic strategy for enhancing the effectiveness of PARP inhibitors against TNBC. SIGNIFICANCE: These findings demonstrate that targeting MUC1-C disrupts epigenetics of the PARP1 complex, inhibits PARP1 activity, and is synergistic with olaparib in TNBC cells.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Mucina-1/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Mucina-1/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515788

RESUMEN

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Pronóstico , Transducción de Señal
15.
Mol Cancer Res ; 16(12): 1952-1964, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30082484

RESUMEN

Breast cancer remains the most common malignant disease in women worldwide. Despite advances in detection and therapies, studies are still needed to understand the mechanisms underlying this cancer. Cancer stem cells (CSC) play an important role in tumor formation, growth, drug resistance, and recurrence. Here, it is demonstrated that the transcription factor RUNX1, well known as essential for hematopoietic differentiation, represses the breast cancer stem cell (BCSC) phenotype and suppresses tumor growth in vivo. The current studies show that BCSCs sorted from premalignant breast cancer cells exhibit decreased RUNX1 levels, whereas ectopic expression of RUNX1 suppresses tumorsphere formation and reduces the BCSC population. RUNX1 ectopic expression in breast cancer cells reduces migration, invasion, and in vivo tumor growth (57%) in mouse mammary fat pad. Mechanistically, RUNX1 functions to suppress breast cancer tumor growth through repression of CSC activity and direct inhibition of ZEB1 expression. Consistent with these cellular and biochemical results, clinical findings using patient specimens reveal that the highest RUNX1 levels occur in normal mammary epithelial cells and that low RUNX1 expression in tumors is associated with poor patient survival. IMPLICATIONS: The key finding that RUNX1 represses stemness in several breast cancer cell lines points to the importance of RUNX1 in other solid tumors where RUNX1 may regulate CSC properties.


Asunto(s)
Neoplasias de la Mama/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Neoplásicas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Estadificación de Neoplasias , Trasplante de Neoplasias , Análisis de Supervivencia
16.
J Cell Physiol ; 233(12): 9136-9144, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968906

RESUMEN

Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/patología , Femenino , Heterogeneidad Genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
17.
J Cell Physiol ; 233(2): 1278-1290, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28504305

RESUMEN

Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromosomas Humanos Par 6 , Histonas/genética , Familia de Multigenes , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patología , Forma del Núcleo Celular , Proliferación Celular , Cromatina/metabolismo , Biología Computacional , Bases de Datos Genéticas , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Regulación hacia Arriba
18.
Mol Cell Biol ; 37(23)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28923849

RESUMEN

Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.


Asunto(s)
Diferenciación Celular/genética , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Animales , Metilación de ADN/genética , Histonas/genética , Histonas/metabolismo , Humanos
19.
Oncotarget ; 8(11): 17610-17627, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28407681

RESUMEN

Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFß signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFß and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.


Asunto(s)
Neoplasias de la Mama/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Células Epiteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa , Análisis de Matrices Tisulares , Transcriptoma
20.
J Cell Physiol ; 232(6): 1295-1305, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27627025

RESUMEN

Experimental approaches to define the relationship between gene expression and nuclear matrix attachment regions (MARs) have given contrasting and method-specific results. We have developed a next generation sequencing strategy to identify MARs across the human genome (MAR-Seq). The method is based on crosslinking chromatin to its nuclear matrix attachment sites to minimize changes during biochemical processing. We used this method to compare nuclear matrix organization in MCF-10A mammary epithelial-like cells and MDA-MB-231 breast cancer cells and evaluated the results in the context of global gene expression (array analysis) and positional enrichment of gene-regulatory histone modifications (ChIP-Seq). In the normal-like cells, nuclear matrix-attached DNA was enriched in expressed genes, while in the breast cancer cells, it was enriched in non-expressed genes. In both cell lines, the chromatin modifications that mark transcriptional activation or repression were appropriately associated with gene expression. Using this new MAR-Seq approach, we provide the first genome-wide characterization of nuclear matrix attachment in mammalian cells and reveal that the nuclear matrix-associated genome is highly cell-context dependent. J. Cell. Physiol. 232: 1295-1305, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
ADN/metabolismo , Genoma Humano , Regiones de Fijación a la Matriz/genética , Matriz Nuclear/metabolismo , Neoplasias de la Mama/genética , Línea Celular , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA