Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29576-29584, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005816

RESUMEN

Electromigration, as a common reason for interconnect failure, is becoming increasingly important in the ongoing decrease in the integrated circuit manufacturing process. A study is being carried out utilizing the ab initio calculational method to gain a deeper understanding of electromigration, with a focus on the atom diffusion process in the Ag-Pd alloy system, a commonly used interconnect material. We begin by establishing that the primary mechanism of diffusion is step-edge diffusion on the (111) surface. Following this, we examine the current-induced force exerted on the migrating Ag atom. The Pd substitutional defect reveals an effect that increases the energy barrier of diffusion and decreases the current-induced force that powers the directional migration.

2.
ACS Nano ; 18(20): 13106-13116, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722252

RESUMEN

Layered oxide cathodes of sodium-ion batteries (SIBs) are considered promising candidates due to their fascinating high capacity, good cyclability, and environmental friendliness. However, the air sensitivity of layered SIB cathodes causes high electrode manufacturing costs and performance deterioration, hampering their practical application. Herein, a commercial O3-type layered Na(Ni1/3Fe1/3Mn1/3)O2 (NNFM) material is adopted to investigate the air corrosive problem and the suppression strategy. We reveal that once the layered material comes in contact with ambient air, cations migrate from transition metal (TM) layers to sodium layers at the near surface, although Na+ and TM ions show quite different ion radii. Experimental results and theoretical calculations show that more Ni/Na disorder occurs in the air-exposed O3-NNFM materials, owing to a lower Ni migration energy barrier. The cation mixing results in detrimental structural distortion, along with the formation of residual alkali species on the surface, leading to high impedance for Na+ diffusion during charge/discharge. To tackle this problem, an ultrathin and uniform hydrophobic molecular layer of perfluorodecyl trimethoxysilane is assembled on the O3-NNFM surface, which significantly suppresses unfavorable chemistry and structure degradation during air storage. The in-depth understanding of the structural degradation mechanism and suppression strategy presented in this work can facilitate high-energy cathode manufacturing from the perspective of future practical implementation and commercialization.

3.
Sci Adv ; 10(10): eadn2265, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446894

RESUMEN

Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.

4.
Small ; 20(32): e2400965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506595

RESUMEN

Nanostructured metal hydrides with unique morphology and improved hydrogen storage properties have attracted intense interests. However, the study of the growth process of highly active borohydrides remains challenging. Herein, for the first time the synthesis of LiBH4 nanorods through a hydrogen-assisted one-pot solvothermal reaction is reported. Reaction of n-butyl lithium with triethylamine borane in n-hexane under 50 bar of H2 at 40-100 °C gives rise to the formation of the [100]-oriented LiBH4 nanorods with 500-800 nm in diameter, whose growth is driven by orientated attachment and ligand adsorption. The unique morphology enables the LiBH4 nanorods to release hydrogen from ≈184 °C, 94 °C lower than the commercial sample (≈278 °C). Hydrogen release amounts to 13 wt% within 40 min at 450 °C with a stable cyclability, remarkably superior to the commercial LiBH4 (≈9.1 wt%). More importantly, up to 180 °C reduction in the onset temperature of hydrogenation is successfully attained by the nanorod sample with respect to the commercial counterpart. The LiBH4 nanorods show no foaming during dehydrogenation, which improves the hydrogen cycling performance. The new approach will shed light on the preparation of nanostructured metal borohydrides as advanced functional materials.

5.
Nat Commun ; 15(1): 1374, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355699

RESUMEN

Electric field-induced second harmonic generation allows electrically controlling nonlinear light-matter interactions crucial for emerging integrated photonics applications. Despite its wide presence in materials, the figures-of-merit of electric field-induced second harmonic generation are yet to be elevated to enable novel device functionalities. Here, we show that the polar skyrmions, a topological phase spontaneously formed in PbTiO3/SrTiO3 ferroelectric superlattices, exhibit a high comprehensive electric field-induced second harmonic generation performance. The second-order nonlinear susceptibility and modulation depth, measured under non-resonant 800 nm excitation, reach ~54.2 pm V-1 and ~664% V-1, respectively, and high response bandwidth (higher than 10 MHz), wide operating temperature range (up to ~400 K) and good fatigue resistance (>1010 cycles) are also demonstrated. Through combined in-situ experiments and phase-field simulations, we establish the microscopic links between the exotic polarization configuration and field-induced transition paths of the skyrmions and their electric field-induced second harmonic generation response. Our study not only presents a highly competitive thin-film material ready for constructing on-chip devices, but opens up new avenues of utilizing topological polar structures in the fields of photonics and optoelectronics.

6.
ACS Appl Mater Interfaces ; 16(1): 1492-1501, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153799

RESUMEN

Piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymers have been widely investigated for applications in wearable electric devices and sensing systems, owing to their intrinsic piezoelectricity and superior flexibility. However, their weak piezoelectricity poses major challenges for practical applications. To overcome these challenges, we propose a two-step synthesis approach to fabricate sandwich-structured piezoelectric films (BaTiO3@PDA/PVDF/BaTiO3@PDA) with significantly enhanced ferroelectric and piezoelectric properties. As compared to pristine PVDF films or conventional 0-3 composite films, a maximum polarization (Pmax) of 11.24 µC/cm2, a remanent polarization (Pr) of 5.83 µC/cm2, and an enhanced piezoelectric coefficient (d33 ∼ 14.6 pC/N) were achieved. Simulation and experimental results have demonstrated that the sandwich structure enhances the ability of composite films to withstand higher poling electric fields in comparison with 0-3 composites. The sandwich-structured piezoelectric films are further integrated into a wireless sensor system with a high force sensitivity of 288 mV/N, demonstrating great potential for movement monitoring applications. This facile approach shows great promise for the large-scale production of composite films with remarkable flexibility, ferroelectricity, and piezoelectricity for wearable sensing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA