Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Regen Biomater ; 11: rbad115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313824

RESUMEN

Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.

2.
J Biomed Mater Res A ; 111(12): 1888-1902, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37555381

RESUMEN

Biomaterials for nucleus pulposus (NP) replacement and regeneration have great potential to restore normal biomechanics in degenerated intervertebral discs following nucleotomy. Mechanical characterizations are essential for assessing the efficacy of biomaterial implants for clinical applications. While traditional compression tests are crucial to quantify various modulus values, relaxation behaviors and fatigue resistance, rheological measurements should also be conducted to investigate the viscoelastic properties, injectability, and overall stability upon deformation. To recapitulate the physiological in vivo environment, the use of spinal models is necessary to evaluate the risk of implant extrusion and the restoration of biomechanics under different loading conditions. When designing devices for NP replacement, injectable materials are ideal to fully fill the nucleus cavity and prevent implant migration. In addition to achieving biocompatibility and desirable mechanical characteristics, biomaterial implants should be optimized to avoid implant extrusion or re-herniation post-operatively. This review discusses the most commonly used testing protocols for assessing mechanical properties of biomaterial implants and serves as reference material for enabling researchers to characterize NP implants through a unified approach whereby newly developed biomaterials may be compared and contrasted to existing devices.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Materiales Biocompatibles , Disco Intervertebral/cirugía , Disco Intervertebral/fisiología , Prótesis e Implantes , Regeneración , Degeneración del Disco Intervertebral/cirugía
3.
Biomater Adv ; 138: 212949, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35913241

RESUMEN

Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350-400 µm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in the precipitation of hydroxyapatite (HA) on the borosilicate glass evidenced by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Around 90% of CGRP was released from scaffolds after 7 days of immersion in SBF, reaching a final released concentration of 893.00 ± 63.30 ng/mL. Cellular adhesion, proliferation, and differentiation of human bone marrow mesenchymal stem cells (HBMSCs) cultured with BSG-SA/CGRP scaffolds revealed improved biocompatibility and osteogenic capabilities compared with BSG-SA scaffolds in the absence of CGRP. When subcutaneously implanted in rat models, BSG-SA/CGRP scaffolds induced low localized inflammation without causing bodily harm in vivo. Findings revealed that bioactive glass scaffolds incorporating CGRP met the scaffold requirements for bone regeneration and that the addition of CGRP promoted osteogenic differentiation where it may potentially be utilized for future regenerative applications.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Ingeniería de Tejidos , Alginatos/farmacología , Animales , Humanos , Hidrogeles , Osteogénesis , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
ACS Appl Mater Interfaces ; 14(24): 27575-27588, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35674114

RESUMEN

Bioprinting is a biofabrication technology which allows efficient and large-scale manufacture of 3D cell culture systems. However, the available biomaterials for bioinks used in bioprinting are limited by their printability and biological functionality. Fabricated constructs are often homogeneous and have limited complexity in terms of current 3D cell culture systems comprising multiple cell types. Inspired by the phenomenon that hydrogels can exchange liquids under the infiltration action, infiltration-induced suspension bioprinting (IISBP), a novel printing technique based on a hyaluronic acid (HA) suspension system to modulate the properties of the printed scaffolds by infiltration action, was described in this study. HA served as a suspension system due to its shear-thinning and self-healing rheological properties, simplicity of preparation, reusability, and ease of adjustment to osmotic pressure. Changes in osmotic pressure were able to direct the swelling or shrinkage of 3D printed gelatin methacryloyl (GelMA)-based bioinks, enabling the regulation of physical properties such as fiber diameter, micromorphology, mechanical strength, and water absorption of 3D printed scaffolds. Human umbilical vein endothelial cells (HUVEC) were applied as a cell culture model and printed within cell-laden scaffolds at high resolution and cell viability with the IISBP technique. Herein, the IISBP technique had been realized as a reliable hydrogel-based bioprinting technique, which enabled facile modulation of 3D printed hydrogel scaffolds properties, being expected to meet the scaffolds requirements of a wide range of cell culture conditions to be utilized in bioprinting applications.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Gelatina , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles , Metacrilatos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
5.
MethodsX ; 8: 101186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33376679

RESUMEN

Bioprinting is a rapidly expanding technology with the ability to fabricate in vitro three-dimensional (3D) tissues in a layer-by-layer manner to ultimately produce a living tissue which physiologically resembles native in vivo tissue functionality. Unfortunately, large costs associated with commercially available bioprinters severely limit access to the technology. We investigated the potential for modifying a low-cost commercially available RepRap Prusa iteration 3 (i3) 3D printer with an open-source syringe-housed microextrusion print-head unit (universal paste extruder by Richard Horne, RichRap), that allowed for controlled deposition of cell-laden bioinks and Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method-based printing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA