Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964788

RESUMEN

BACKGROUND: OX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer. METHODS: Anti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed. RESULTS: Isotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion. CONCLUSIONS: These findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes.


Asunto(s)
Receptores OX40 , Animales , Humanos , Ratones , Receptores OX40/agonistas , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Línea Celular Tumoral , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Modelos Animales de Enfermedad
2.
Cancer Discov ; 13(10): 2131-2149, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37712571

RESUMEN

Small-molecule drugs have enabled the practice of precision oncology for genetically defined patient populations since the first approval of imatinib in 2001. Scientific and technology advances over this 20-year period have driven the evolution of cancer biology, medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer targets. The integration of these tools and their customization in the hands of skilled drug hunters will be necessary to enable the discovery of transformational therapies for patients across a wider spectrum of cancers. SIGNIFICANCE: Target-centric small-molecule drug discovery necessitates the consideration of multiple approaches to identify chemical matter that can be optimized into drug candidates. To do this successfully and consistently, drug hunters require a comprehensive toolbox to avoid following the "law of instrument" or Maslow's hammer concept where only one tool is applied regardless of the requirements of the task. Combining our ever-increasing understanding of cancer and cancer targets with the technological advances in drug discovery described below will accelerate the next generation of small-molecule drugs in oncology.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Ciencia de los Datos , Medicina de Precisión , Descubrimiento de Drogas , Biología
3.
Cancer Res Commun ; 3(8): 1564-1579, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37593752

RESUMEN

In recent years, there has been considerable interest in mAb-based induction of costimulatory receptor signaling as an approach to combat cancer. However, promising nonclinical data have yet to translate to a meaningful clinical benefit. Inducible T-cell costimulator (ICOS) is a costimulatory receptor important for immune responses. Using a novel clinical-stage anti-ICOS immunoglobulin G4 mAb (feladilimab), which induces but does not deplete ICOS+ T cells and their rodent analogs, we provide an end-to-end evaluation of the antitumor potential of antibody-mediated ICOS costimulation alone and in combination with programmed cell death protein 1 (PD-1) blockade. We demonstrate, consistently, that ICOS is expressed in a range of cancers, and its induction can stimulate growth of antitumor reactive T cells. Furthermore, feladilimab, alone and with a PD-1 inhibitor, induced antitumor activity in mouse and humanized tumor models. In addition to nonclinical evaluation, we present three patient case studies from a first-time-in-human, phase I, open-label, dose-escalation and dose-expansion clinical trial (INDUCE-1; ClinicalTrials.gov: NCT02723955), evaluating feladilimab alone and in combination with pembrolizumab in patients with advanced solid tumors. Preliminary data showing clinical benefit in patients with cancer treated with feladilimab alone or in combination with pembrolizumab was reported previously; with example cases described here. Additional work is needed to further validate the translation to the clinic, which includes identifying select patient populations that will benefit from this therapeutic approach, and randomized data with survival endpoints to illustrate its potential, similar to that shown with CTLA-4 and PD-1 blocking antibodies. Significance: Stimulation of the T-cell activation marker ICOS with the anti-ICOS agonist mAb feladilimab, alone and in combination with PD-1 inhibition, induces antitumor activity across nonclinical models as well as select patients with advanced solid tumors.


Asunto(s)
Instituciones de Atención Ambulatoria , Anticuerpos Monoclonales , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Inhibidores de Puntos de Control Inmunológico , Inmunoglobulina G , Inhibición Psicológica
4.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36927527

RESUMEN

BACKGROUND: The phase I first-in-human study ENGAGE-1 evaluated the humanized IgG1 OX40 agonistic monoclonal antibody GSK3174998 alone (Part 1 (P1)) or in combination with pembrolizumab (Part 2 (P2)) in patients with advanced solid tumors. METHODS: GSK3174998 (0.003-10 mg/kg) ± pembrolizumab (200 mg) was administered intravenously every 3 weeks using a continuous reassessment method for dose escalation. Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics, immunogenicity, pharmacodynamics, and clinical activity. RESULTS: 138 patients were enrolled (45 (P1) and 96 (P2, including 3 crossovers)). Treatment-related adverse events occurred in 51% (P1) and 64% (P2) of patients, fatigue being the most common (11% and 24%, respectively). No dose-toxicity relationship was observed, and maximum-tolerated dose was not reached. Dose-limiting toxicities (P2) included Grade 3 (G3) pleural effusion and G1 myocarditis with G3 increased troponin. GSK3174998 ≥0.3 mg/kg demonstrated pharmacokinetic linearity and >80% receptor occupancy on circulating T cells; 0.3 mg/kg was selected for further evaluation. Limited clinical activity was observed for GSK3174998 (P1: disease control rate (DCR) ≥24 weeks 9%) and was not greater than that expected for pembrolizumab alone (P2: overall response rate 8%, DCR ≥24 weeks 28%). Multiplexed immunofluorescence data from paired biopsies suggested that increased infiltration of natural killer (NK)/natural killer T (NKT) cells and decreased regulatory T cells (Tregs) in the tumor microenvironment may contribute to clinical responses: CD16+CD56-CD134+ NK /NKT cells and CD3+CD4+FOXP3+CD134+ Tregs exhibited the largest magnitude of change on treatment, whereas CD3+CD8+granzyme B+PD-1+CD134+ cytotoxic T cells were the least variable. Tumor gene expression profiling revealed an upregulation of inflammatory responses, T-cell proliferation, and NK cell function on treatment with some inflammatory cytokines upregulated in peripheral blood. However, target engagement, evidenced by pharmacologic activity in peripheral blood and tumor tissue, did not correlate with clinical efficacy. The low number of responses precluded identifying a robust biomarker signature predictive of response. CONCLUSIONS: GSK3174998±pembrolizumab was well tolerated over the dose range tested and demonstrated target engagement. Limited clinical activity does not support further development of GSK3174998±pembrolizumab in advanced cancers. TRIAL REGISTRATION NUMBER: NCT02528357.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/patología , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Microambiente Tumoral
5.
Mol Cancer Ther ; 20(10): 1941-1955, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253590

RESUMEN

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígeno de Maduración de Linfocitos B/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Inmunoconjugados/farmacología , Muerte Celular Inmunogénica , Linfoma/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/química , Apoptosis , Antígeno de Maduración de Linfocitos B/inmunología , Proliferación Celular , Femenino , Humanos , Linfoma/inmunología , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nat Rev Drug Discov ; 20(6): 476-488, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33833444

RESUMEN

Cell therapy is one of the fastest growing areas in the pharmaceutical industry, with considerable therapeutic potential. However, substantial challenges regarding the utility of these therapies will need to be addressed before they can become mainstream medicines with applicability similar to that of small molecules or monoclonal antibodies. Engineered T cells have achieved success in the treatment of blood cancers, with four chimeric antigen receptor (CAR)-T cell therapies now approved for the treatment of B cell malignancies based on their unprecedented efficacy in clinical trials. However, similar results have not yet been achieved in the treatment of the much larger patient population with solid tumours. For cell therapies to become mainstream medicines, they may need to offer transformational clinical effects for patients and be applicable in disease settings that remain unaddressed by simpler approaches. This Perspective provides an industry perspective on the progress achieved by engineered T cell therapies to date and the opportunities and current barriers for accessing broader patient populations, and discusses the solutions and new development strategies required to fully industrialize the therapeutic potential of engineered T cells as medicines.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Ingeniería Genética , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Humanos , Neoplasias/inmunología , Resultado del Tratamiento
7.
EMBO Mol Med ; 13(1): e12850, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33372722

RESUMEN

Decision making in immuno-oncology is pivotal to adapt therapy to the tumor microenvironment (TME) of the patient among the numerous options of monoclonal antibodies or small molecules. Predicting the best combinatorial regimen remains an unmet medical need. Here, we report a multiplex functional and dynamic immuno-assay based on the capacity of the TME to respond to ex vivo stimulation with twelve immunomodulators including immune checkpoint inhibitors (ICI) in 43 human primary tumors. This "in sitro" (in situ/in vitro) assay has the potential to predict unresponsiveness to anti-PD-1 mAbs, and to detect the most appropriate and personalized combinatorial regimen. Prospective clinical trials are awaited to validate this in sitro assay.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Oncología Médica , Neoplasias/terapia , Estudios Prospectivos , Microambiente Tumoral
8.
Blood Cancer J ; 10(10): 106, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097687

RESUMEN

DREAMM-2 (NCT03525678) is an ongoing global, open-label, phase 2 study of single-agent belantamab mafodotin (belamaf; GSK2857916), a B-cell maturation antigen-targeting antibody-drug conjugate, in a frozen-liquid presentation in patients with relapsed/refractory multiple myeloma (RRMM). Alongside the main study, following identical inclusion/exclusion criteria, a separate patient cohort was enrolled to receive belamaf in a lyophilised presentation (3.4 mg/kg, every 3 weeks) until disease progression/unacceptable toxicity. Primary outcome was independent review committee-assessed overall response rate (ORR). Twenty-five patients were enrolled; 24 received ≥1 dose of belamaf. As of 31 January 2020, ORR was 52% (95% CI: 31.3-72.2); 24% of patients achieved very good partial response. Median duration of response was 9.0 months (2.8-not reached [NR]); median progression-free survival was 5.7 months (2.2-9.7); median overall survival was not reached (8.7 months-NR). Most common grade 3/4 adverse events were keratopathy (microcyst-like corneal epithelial changes, a pathological finding seen on eye examination [75%]), thrombocytopenia (21%), anaemia (17%), hypercalcaemia and hypophosphatemia (both 13%), neutropenia and blurred vision (both 8%). Pharmacokinetics supported comparability of frozen-liquid and lyophilised presentations. Single-agent belamaf in a lyophilised presentation (intended for future use) showed a deep and durable clinical response and acceptable safety profile in patients with heavily pre-treated RRMM.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Mieloma Múltiple/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Recurrencia , Tasa de Supervivencia
9.
Lancet Oncol ; 21(2): 207-221, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31859245

RESUMEN

BACKGROUND: Belantamab mafodotin (GSK2857916), an immunoconjugate targeting B-cell maturation antigen, showed single-agent activity in the phase 1 DREAMM-1 study in heavily pre-treated patients with relapsed or refractory multiple myeloma. We further investigated the safety and activity of belantamab mafodotin in the DREAMM-2 study. METHODS: DREAMM-2 is an open-label, two-arm, phase 2 study done at 58 multiple myeloma specialty centres in eight countries. Patients (aged ≥18 years) with relapsed or refractory multiple myeloma with disease progression after three or more lines of therapy and who were refractory to immunomodulatory drugs and proteasome inhibitors, and refractory or intolerant (or both) to an anti-CD38 monoclonal antibody with an Eastern Cooperative Oncology Group performance status of 0-2 were recruited, centrally randomly assigned (1:1) with permuted blocks (block size 4), and stratified by previous lines of therapy (≤4 vs >4) and cytogenetic features to receive 2·5 mg/kg or 3·4 mg/kg belantamab mafodotin via intravenous infusion every 3 weeks on day 1 of each cycle until disease progression or unacceptable toxicity. The intention-to-treat population comprised all randomised patients, regardless of treatment administration. The safety population comprised all patients who received at least one dose of belantamab mafodotin. The primary outcome was the proportion of randomly assigned patients in the intention-to-treat population who achieved an overall response, as assessed by an independent review committee. This study is registered with ClinicalTrials.gov, NCT03525678, and is ongoing. FINDINGS: Between June 18, 2018, and Jan 2, 2019, 293 patients were screened and 196 were included in the intention-to-treat population (97 in the 2·5 mg/kg cohort and 99 in the 3·4 mg/kg cohort). As of June 21, 2019 (the primary analysis data cutoff date), 30 (31%; 97·5% CI 20·8-42·6) of 97 patients in the 2·5 mg/kg cohort and 34 (34%; 23·9-46·0) of 99 patients in the 3·4 mg/kg cohort achieved an overall response. The most common grade 3-4 adverse events in the safety population were keratopathy (in 26 [27%] of 95 patients in the 2·5 mg/kg cohort and 21 [21%] of 99 patients in the 3·4 mg/kg cohort), thrombocytopenia (19 [20%] and 33 [33%]), and anaemia (19 [20%] and 25 [25%]); 38 (40%) of 95 patients in the 2·5 mg/kg cohort and 47 (47%) of 99 in the 3·4 mg/kg cohort reported serious adverse events. Two deaths were potentially treatment related (one case of sepsis in the 2·5 mg/kg cohort and one case of haemophagocytic lymphohistiocytosis in the 3·4 mg/kg cohort). INTERPRETATION: Single-agent belantamab mafodotin shows anti-myeloma activity with a manageable safety profile in patients with relapsed or refractory multiple myeloma. FUNDING: GlaxoSmithKline.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
10.
Clin Cancer Res ; 25(21): 6406-6416, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371342

RESUMEN

PURPOSE: OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kß inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS: We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kß-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS: These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.


Asunto(s)
Anticuerpos Antiidiotipos/farmacología , Melanoma/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Receptores OX40/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Receptores OX40/antagonistas & inhibidores
12.
Blood Cancer J ; 9(4): 37, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894515

RESUMEN

Interim analyses of a phase I study with GSK2857916, an antibody-drug conjugate against B cell maturation antigen, have previously reported a 60% overall response and 7.9 months progression-free survival in relapsed/refractory multiple myeloma (MM). We provide updated safety and efficacy results of the BMA117159 trial following an additional 14 months' follow-up. This open-label, first-in-human, phase I study was conducted at nine centres in the USA, Canada and the UK, and included adults with MM and progressive disease after stem cell transplantation, alkylators, proteasome inhibitors, and immunomodulators. In part 1, the recommended dose of 3.4 mg/kg was identified; in part 2, patients received GSK2857916 3.4 mg/kg once every 3 weeks. Selected part 2 safety/tolerability and efficacy endpoints are reported. Twenty-one (60.0%; 95% confidence interval (CI) 42.1-76.1) of 35 patients achieved partial response or better, including two stringent complete responses and three complete responses. The median progression-free survival was 12 months and median duration of response was 14.3 months. Thrombocytopenia and corneal events were commonly reported; no new safety signals were identified. GSK2857916 was well tolerated and demonstrated a rapid, deep and durable response in heavily pre-treated patients with relapsed/refractory MM, consolidating the interim analyses conclusions that GSK2857916 is a promising treatment for these patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Esquema de Medicación , Femenino , Humanos , Masculino
13.
Nature ; 564(7736): 439-443, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30405246

RESUMEN

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Diseño de Fármacos , Proteínas de la Membrana/agonistas , Animales , Bencimidazoles/administración & dosificación , Bencimidazoles/uso terapéutico , Humanos , Ligandos , Proteínas de la Membrana/inmunología , Ratones , Modelos Moleculares , Nucleótidos Cíclicos/metabolismo
14.
Lancet Oncol ; 19(12): 1641-1653, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30442502

RESUMEN

BACKGROUND: B-cell maturation antigen (BCMA) is a cell-surface receptor of the tumour necrosis superfamily required for plasma cell survival. BMCA is universally detected on patient-derived myeloma cells and has emerged as a selective antigen to be targeted by novel treatments in multiple myeloma. We assessed the safety, tolerability, and preliminary clinical activity of GSK2857916, a novel anti-BCMA antibody conjugated to microtubule-disrupting agent monomethyl auristatin F, in patients with relapsed and refractory multiple myeloma. METHODS: We did an international, multicentre, open-label, first-in-human phase 1 study with dose escalation (part 1) and dose expansion (part 2) phases, at nine centres in the USA, Canada, and the UK. Adults with histologically or cytologically confirmed multiple myeloma, Eastern Cooperative Oncology Group performance status 0 or 1, and progressive disease after stem cell transplantation, alkylators, proteasome inhibitors, and immunomodulators were recruited for this study. In part 1, patients received GSK2857916 (0·03-4·60 mg/kg) through 1 h intravenous infusions once every 3 weeks. In part 2, patients received the selected recommended phase 2 dose of GSK2857916 (3·40 mg/kg) once every 3 weeks. Primary endpoints were maximum tolerated dose and recommended phase 2 dose. Secondary endpoints for part 2 included preliminary anti-cancer clinical activity. All patients who received one or more doses were included in this prespecified administrative interim analysis (data cutoff date June 26, 2017), which was done for internal purposes. This study is registered with ClinicalTrials.gov, number NCT02064387, and is ongoing, but closed for recruitment. FINDINGS: Between July 29, 2014, and Feb 21, 2017, we treated 73 patients: 38 patients in the dose-escalation part 1 and 35 patients in the dose-expansion part 2. There were no dose-limiting toxicities and no maximum tolerated dose was identified in part 1. On the basis of safety and clinical activity, we selected 3·40 mg/kg as the recommended phase 2 dose. Corneal events were common (20 [53%] of 38 patients in part 1 and 22 [63%] of 35 in part 2); most (18 [47%] in part 1 and 19 [54%] in part 2) were grade 1 or 2 and resulted in two treatment discontinuations in part 1 and no discontinuations in part 2. The most common grade 3 or 4 events were thrombocytopenia (13 [34%] of 38 patients in part 1 and 12 [34%] of 35 in part 2) and anaemia (6 [16%] in part 1 and 5 [14%] in part 2). There were 12 treatment-related serious adverse events and no treatment-related deaths. In part 2, 21 (60·0%; 95% CI 42·1-76·1) of 35 patients achieved an overall response. INTERPRETATION: At the identified recommended phase 2 dose, GSK2857916 was well tolerated and had good clinical activity in heavily pretreated patients, thereby indicating that this might be a promising candidate for the treatment of relapsed or refractory multiple myeloma. FUNDING: GlaxoSmithKline.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Antígeno de Maduración de Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Inmunoconjugados/administración & dosificación , Mieloma Múltiple/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Linfocitos B/inmunología , Canadá , Resistencia a Antineoplásicos , Femenino , Humanos , Inmunoconjugados/efectos adversos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/inmunología , Recurrencia , Factores de Tiempo , Resultado del Tratamiento , Reino Unido , Estados Unidos
15.
PLoS One ; 13(11): e0206223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30388137

RESUMEN

Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.


Asunto(s)
Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral , Animales , Complejo CD3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quimiocinas/metabolismo , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Antígeno Ki-67/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Mieloides/patología , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Resultado del Tratamiento
16.
Cancer J ; 24(3): 111-114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30273184

RESUMEN

As a part of the Cancer Moonshot, the National Cancer Institute, part of the National Institutes of Health, the Foundation for National Institutes of Health, the US Food and Drug Administration, and 12 pharmaceutical companies have formed a 5-year, $220 million precompetitive public-private research collaboration called the Partnership for Accelerating Cancer Therapies. A systematic cross-sector effort to identify and develop robust, standardized biomarkers and related clinical data, Partnership for Accelerating Cancer Therapies will support the selection and testing of promising immunotherapies for the treatment of cancer, with the goal of bringing effective therapy to more patients.


Asunto(s)
Neoplasias/economía , Neoplasias/terapia , Biomarcadores de Tumor/metabolismo , Humanos , National Cancer Institute (U.S.)/economía , Neoplasias/metabolismo , Estados Unidos , United States Food and Drug Administration/economía
17.
Nat Rev Drug Discov ; 17(7): 509-527, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29904196

RESUMEN

Immune cell functions are regulated by co-inhibitory and co-stimulatory receptors. The first two generations of cancer immunotherapy agents consist primarily of antagonist antibodies that block negative immune checkpoints, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte protein 4 (CTLA4). Looking ahead, there is substantial promise in targeting co-stimulatory receptors with agonist antibodies, and a growing number of these agents are making their way through various stages of development. This Review discusses the key considerations and potential pitfalls of immune agonist antibody design and development, their differentiating features from antagonist antibodies and the landscape of agonist antibodies in clinical development for cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias/inmunología , Neoplasias/terapia , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
18.
J Clin Oncol ; 36(9): 850-858, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29341833

RESUMEN

Purpose Treating solid tumors with cancer immunotherapy (CIT) can result in unconventional responses and overall survival (OS) benefits that are not adequately captured by Response Evaluation Criteria In Solid Tumors (RECIST) v1.1. We describe immune-modified RECIST (imRECIST) criteria, designed to better capture CIT responses. Patients and Methods Atezolizumab data from clinical trials in non-small-cell lung cancer, metastatic urothelial carcinoma, renal cell carcinoma, and melanoma were evaluated. Modifications to imRECIST versus RECIST v1.1 included allowance for best overall response after progressive disease (PD) and changes in PD definitions per new lesions (NLs) and nontarget lesions. imRECIST progression-free survival (PFS) did not count initial PD as an event if the subsequent scan showed disease control. OS was evaluated using conditional landmarks in patients whose PFS differed by imRECIST versus RECIST v1.1. Results The best overall response was 1% to 2% greater, the disease control rate was 8% to 13% greater, and the median PFS was 0.5 to 1.5 months longer per imRECIST versus RECIST v1.1. Extension of imRECIST PFS versus RECIST v1.1 PFS was associated with longer or similar OS. Patterns of progression analysis revealed that patients who developed NLs without target lesion (TL) progression had a similar or shorter OS compared with patients with RECIST v1.1 TL progression. Patients infrequently experienced a spike pattern (TLs increase, then decrease) but had longer OS than patients without TL reversion. Conclusion Evaluation of PFS and patterns of response and progression revealed that allowance for TL reversion from PD per imRECIST may better identify patients with OS benefit. Progression defined by the isolated appearance of NLs, however, is not associated with longer OS. These results may inform additional modifications to radiographic criteria (including imRECIST) to better reflect efficacy with CIT agents.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias/inmunología , Neoplasias/terapia , Anticuerpos Monoclonales Humanizados , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Inmunoterapia/métodos , Neoplasias Renales/inmunología , Neoplasias Renales/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Melanoma/inmunología , Melanoma/terapia , Supervivencia sin Progresión , Neoplasias Urológicas/inmunología , Neoplasias Urológicas/terapia
19.
Methods Mol Biol ; 1499: 203-222, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27987152

RESUMEN

A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.


Asunto(s)
Vacunas contra el Cáncer/inmunología , ARN Mensajero/inmunología , Animales , Antígenos/inmunología , Europa (Continente) , Terapia Genética/métodos , Humanos , Neoplasias/inmunología , Neoplasias/terapia
20.
Blood ; 128(21): 2489-2496, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27574190

RESUMEN

Uniformly adopted response criteria are essential for assessment of therapies incorporating conventional chemotherapy and chemoimmunotherapy regimens. Recently, immunomodulatory agents, such as immune checkpoint inhibitors, have demonstrated impressive activity in a broad range of lymphoma histologies. However, these agents may be associated with clinical and imaging findings during treatment suggestive of progressive disease (PD) despite evidence of clinical benefit (eg, tumor flare or pseudo-progression). Considering this finding as PD could lead to patients being prematurely removed from a treatment from which they actually stand to benefit. This phenomenon has been well described with checkpoint blockade therapy in solid tumors and anecdotally seen in lymphoma as well. To address this issue in the context of lymphoma immunomodulatory therapy, a workshop was convened to provide provisional recommendations to modify current response criteria in patients receiving these and future agents in clinical trials. The term "indeterminate response" was introduced to identify such lesions until confirmed as flare/pseudo-progression or true PD by either biopsy or subsequent imaging.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Linfoma/clasificación , Linfoma/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA