Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Brain Struct Funct ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020215

RESUMEN

Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.

2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38869374

RESUMEN

The central sulcus divides the primary motor and somatosensory cortices in many anthropoid primate brains. Differences exist in the surface area and depth of the central sulcus along the dorso-ventral plane in great apes and humans compared to other primate species. Within hominid species, there are variations in the depth and aspect of their hand motor area, or knob, within the precentral gyrus. In this study, we used post-image analyses on magnetic resonance images to characterize the central sulcus shape of humans, chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla), and orangutans (Pongo pygmaeus and Pongo abelii). Using these data, we examined the morphological variability of central sulcus in hominids, focusing on the hand region, a significant change in human evolution. We show that the central sulcus shape differs between great ape species, but all show similar variations in the location of their hand knob. However, the prevalence of the knob location along the dorso-ventral plane and lateralization differs between species and the presence of a second ventral motor knob seems to be unique to humans. Humans and orangutans exhibit the most similar and complex central sulcus shapes. However, their similarities may reflect divergent evolutionary processes related to selection for different positional and habitual locomotor functions.


Asunto(s)
Evolución Biológica , Gorilla gorilla , Hominidae , Imagen por Resonancia Magnética , Corteza Motora , Pan troglodytes , Filogenia , Animales , Humanos , Masculino , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Femenino , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Hominidae/anatomía & histología , Hominidae/fisiología , Adulto , Mano/fisiología , Mano/anatomía & histología , Adulto Joven , Pongo pygmaeus/anatomía & histología , Pongo pygmaeus/fisiología , Especificidad de la Especie , Pongo abelii/anatomía & histología , Pongo abelii/fisiología
3.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38895242

RESUMEN

Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.

4.
Am J Primatol ; 86(6): e23619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482892

RESUMEN

In apes and humans, neutrophil to lymphocyte ratio (NLR) can be used as a predictive indicator of a variety of clinical conditions, longevity, and physiological stress. In chimpanzees specifically, NLR systematically varies with age, rearing, sex, and premature death, indicating that NLR may be a useful diagnostic tool in assessing primate health. To date, just one very recent study has investigated NLR in old world monkeys and found lower NLR in males and nursery-reared individuals, as well as a negative relationship between NLR and disease outcomes. Given that baboons are increasingly used as research models, we aimed to characterize NLR in baboons by providing descriptive data and examinations of baboon NLR heritability, and of the relationships between NLR, age, rearing, and sex in 387 olive baboons (Papio anubis) between 6 months and 19 years of age. We found that (1) mother-reared baboons had higher NLRs than nursery-reared baboons; (2) females had higher NLRs than males; and (3) there was a quadratic relationship between NLR and age, such that middle-aged individuals had the highest NLR values. We also examined NLR as a function of transport to a new facility using a subset of the data. Baboons exhibited significantly higher transport NLRs compared to routine exam NLRs. More specifically, adult baboons had higher transport NLRs than routine NLRs, whereas juveniles showed no such difference, suggesting that younger animals may experience transport stress differently than older animals. We also found that transport NLR was heritable, whereas routine NLR was not, possibly suggesting that stress responses (as indicated in NLR) have a strong genetic component. Consistent with research in humans and chimpanzees, these findings suggest that NLR varies with important biological and life history variables and that NLR may be a useful health biomarker in baboons.


Asunto(s)
Linfocitos , Neutrófilos , Papio anubis , Estrés Fisiológico , Animales , Femenino , Papio anubis/genética , Papio anubis/fisiología , Masculino , Embarazo , Factores de Edad , Factores Sexuales
5.
J Comp Psychol ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407079

RESUMEN

Delay of gratification and inhibitory control are generally considered measures of self-control. In humans, individual differences in measures of self-control are associated with a host of behavioral, neurological, cognitive, and health-related outcomes. Self-control is not unique to humans and has been demonstrated in a variety of nonhuman species using a variety of paradigms. In this study, the effect of sex and age on delay of gratification performance, as measured by the hybrid delay task, was tested in a sample of 88 chimpanzees. Additionally, whether individual differences in hybrid delay task performance were associated with different aspects of personality was examined in this study. Contrary to reports in human subjects, geriatric male chimpanzees were found to perform more efficiently than adult males, while no age differences were found between geriatric and adult females. Indeed, delay of gratification efficiency was positively associated with age in males and negatively associated with age in females. Chimpanzees that performed more efficiently on the hybrid delay task were also found to be rated as more intelligent, more extraverted, and less impulsive. These findings suggest that objective measures of efficiency in delay of gratification tasks are associated with different dimensions of personality, which have some overlapping construct validity. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

6.
Elife ; 132024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38275218

RESUMEN

Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.


Asunto(s)
Encéfalo , Primates , Humanos , Animales , Filogenia , Primates/genética , Encéfalo/fisiología , Evolución Molecular , Pan troglodytes/genética , Expresión Génica , Evolución Biológica
7.
Personal Neurosci ; 6: e10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107781

RESUMEN

Autism spectrum disorder (ASD) is a developmental disorder characterized by stereotypies or repetitive behaviors and impairments in social behavior and socio-communicative skills. One hallmark phenotype of ASD is poor joint attention skills compared to neurotypical controls. In addition, individuals with ASD have lower scores on several of the Big 5 personality dimensions, including Extraversion. Here, we examine these traits in a nonhuman primate model (chimpanzees; Pan troglodytes) to further understand the relationship between personality and joint attention skills, as well as the genetic and neural systems that contribute to these phenotypes. We used archival data including receptive joint attention (RJA) performance, personality based on caretaker ratings, and magnetic resonance images from 189 chimpanzees. We found that, like humans, chimpanzees who performed worse on the RJA task had lower Extraversion scores. We also found that joint attention skills and several personality dimensions, including Extraversion, were significantly heritable. There was also a borderline significant genetic correlation between RJA and Extraversion. A conjunction analysis examining gray matter volume showed that there were five main brain regions associated with both higher levels of Extraversion and social cognition. These regions included the right posterior middle and superior temporal gyrus, bilateral inferior frontal gyrus, left inferior frontal sulcus, and left superior frontal sulcus, all regions within the social brain network. Altogether, these findings provide further evidence that chimpanzees serve as an excellent model for understanding the mechanisms underlying social impairment related to ASD. Future research should further examine the relationship between social cognition, personality, genetics, and neuroanatomy and function in nonhuman primate models.

8.
Brain Struct Funct ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889302

RESUMEN

Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.

9.
Science ; 382(6667): eade9516, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824638

RESUMEN

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Asunto(s)
Cognición , Hominidae , Neocórtex , Lóbulo Temporal , Animales , Humanos , Perfilación de la Expresión Génica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiología , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiología , Especificidad de la Especie , Lóbulo Temporal/fisiología
10.
Dev Psychobiol ; 65(7): e22420, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37860908

RESUMEN

Among human and nonhuman primates, mutual eye gaze (MEG) and gaze following are believed to be important for social cognition and communicative signaling. The goals of this study were to examine how early rearing experiences contribute to individual variation in MEG and to examine the potential role of genetic factors underlying this variation. Subjects included 93 female and 23 male baboons (Papio anubis) ranging from 3 to 20 years of age. Within the sample, there were 55 mother-reared (MR) and 61 nursery-reared (NR) baboons. MEG was assessed in four 60-s test sessions. For each session, the duration, frequency, and bout length were recorded. Mean values were then calculated for each individual from the four sessions. A multivariate analysis of covariance revealed an overall significant main effect for rearing. Subsequent univariate analyses revealed significant rearing effects on mean bout length, but not mean duration or mean frequency, with MR baboons having longer bout lengths compared to NR baboons. Furthermore, mean bout length was found to be significantly heritable. These results indicate that rearing experiences, and to a small extent, genetic factors, affect patterns of mutual eye gaze - in particular, bout length. These results differ from previous findings in MR and NR chimpanzees, further suggesting that rearing may impact MEG in a species-specific manner that reflects the function of gaze in different primate species.


Asunto(s)
Fijación Ocular , Papio anubis , Humanos , Animales , Masculino , Femenino , Papio , Primates
11.
Proc Natl Acad Sci U S A ; 120(38): e2311118120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695892

RESUMEN

The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.


Asunto(s)
Conducta Adictiva , Núcleo Accumbens , Animales , Humanos , Neuropéptido Y , Encéfalo , Obesidad , Dopamina , Etanol
12.
Neuroimage ; 282: 120362, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37722605

RESUMEN

Mapping the chimpanzee brain connectome and comparing it to that of humans is key to our understanding of similarities and differences in primate evolution that occurred after the split from their common ancestor around 6 million years ago. In contrast to studies on macaque species' brains, fewer studies have specifically addressed the structural connectivity of the chimpanzee brain and its comparison with the human brain. Most comparative studies in the literature focus on the anatomy of the cortex and deep nuclei to evaluate how their morphology and asymmetry differ from that of the human brain, and some studies have emerged concerning the study of brain connectivity among humans, monkeys, and apes. In this work, we established a new white matter atlas of the deep and superficial white matter structural connectivity in chimpanzees. In vivo anatomical and diffusion-weighted magnetic resonance imaging (MRI) data were collected on a 3-Tesla MRI system from 39 chimpanzees. These datasets were subsequently processed using a novel fiber clustering pipeline adapted to the chimpanzee brain, enabling us to create two novel deep and superficial white matter connectivity atlases representative of the chimpanzee brain. These atlases provide the scientific community with an important and novel set of reference data for understanding the commonalities and differences in structural connectivity between the human and chimpanzee brains. We believe this study to be innovative both in its novel approach and in mapping the superficial white matter bundles in the chimpanzee brain, which will contribute to a better understanding of hominin brain evolution.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Animales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Pan troglodytes , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética , Mapeo Encefálico , Macaca
13.
PLoS Biol ; 21(9): e3002266, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656748

RESUMEN

Human language is supported by a cortical network involving Broca's area, which comprises Brodmann Areas 44 and 45 (BA44 and BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and BA45 in humans and chimpanzees. We found a general expansion of Broca's areas in humans, with the left BA44 enlarging the most, growing anteriorly into a region known to process syntax. Together with recent functional and receptorarchitectural studies, our findings support the conclusion that BA44 evolved from an action-related region to a bipartite system, with a posterior portion supporting action and an anterior portion supporting syntactic processes. Our findings add novel insights to the longstanding debate on the relationship between language and action, and the evolution of Broca's area.


Asunto(s)
Encéfalo , Lenguaje , Humanos , Animales , Pan troglodytes
14.
Commun Biol ; 6(1): 693, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407769

RESUMEN

Identifying the evolutionary origins of human speech remains a topic of intense scientific interest. Here we describe a unique feature of adult human neuroanatomy compared to chimpanzees and other primates that may provide an explanation of changes that occurred to enable the capacity for speech. That feature is the Prefrontal extent of the Frontal Operculum (PFOp) region, which is located in the ventrolateral prefrontal cortex, adjacent and ventromedial to the classical Broca's area. We also show that, in chimpanzees, individuals with the most human-like PFOp, particularly in the left hemisphere, have greater oro-facial and vocal motor control abilities. This critical discovery, when combined with recent paleontological evidence, suggests that the PFOp is a recently evolved feature of human cortical structure (perhaps limited to the genus Homo) that emerged in response to increasing selection for cognitive and motor functions evident in modern speech abilities.


Asunto(s)
Habla , Voz , Adulto , Animales , Humanos , Habla/fisiología , Pan troglodytes/fisiología , Lóbulo Frontal/fisiología , Primates
15.
Sci Adv ; 9(20): eadf9445, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37205762

RESUMEN

Detailed neuroscientific data from macaque monkeys have been essential in advancing understanding of human frontal cortex function, particularly for regions of frontal cortex without homologs in other model species. However, precise transfer of this knowledge for direct use in human applications requires an understanding of monkey to hominid homologies, particularly whether and how sulci and cytoarchitectonic regions in the frontal cortex of macaques relate to those in hominids. We combine sulcal pattern analysis with resting-state functional magnetic resonance imaging and cytoarchitectonic analysis to show that old-world monkey brains have the same principles of organization as hominid brains, with the notable exception of sulci in the frontopolar cortex. This essential comparative framework provides insights into primate brain evolution and a key tool to drive translation from invasive research in monkeys to human applications.


Asunto(s)
Hominidae , Imagen por Resonancia Magnética , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Frontal/diagnóstico por imagen , Primates , Mapeo Encefálico/métodos , Macaca , Cercopithecidae
16.
Proc Natl Acad Sci U S A ; 120(22): e2218565120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216540

RESUMEN

A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.


Asunto(s)
Conectoma , Pan troglodytes , Animales , Humanos , Neurobiología , Encéfalo , Cognición , Imagen por Resonancia Magnética
17.
Neurobiol Aging ; 126: 91-102, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958104

RESUMEN

Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years. We found that chimpanzees showed global and region-specific thinning of cortex with increasing age. Further, within the elderly cohort, chimpanzees that performed better than average had thicker cortex in frontal, temporal and parietal regions compared to chimpanzees that performed worse than average. Independent of age, we also found sex differences in cortical thickness in 4 brain regions. Males had higher adjusted cortical thickness scores for the caudal anterior cingulate, rostral anterior cingulate, and medial orbital frontal while females had higher values for the inferior parietal cortex. We found no evidence that increasing age nor sex was associated with asymmetries in cortical thickness. Moreover, age-related differences in cognitive function were only weakly associated with asymmetries in cortical thickness. In summary, as has been reported in humans and other primates, elderly chimpanzees show thinner cortex and variation in cortical thickness is associated with general cognitive functions.


Asunto(s)
Enfermedad de Alzheimer , Pan troglodytes , Animales , Humanos , Masculino , Femenino , Anciano , Lóbulo Parietal , Cognición , Encéfalo , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología
18.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993711

RESUMEN

Human language is supported by a cortical network involving Broca's area which comprises Brodmann Areas 44 and 45 (BA44, BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and 45 between humans and chimpanzees. We found a general expansion of Broca's areas in humans, with the left BA44 enlarging the most, growing anteriorly into a region known to process syntax. Together with recent functional studies, our findings show that BA44 evolved from a purely action-related region to a more expanded region in humans, with a posterior portion supporting action and an anterior portion supporting syntactic processes. Furthermore, our findings provide a solution for the longstanding debate concerning the structural and functional evolution of Broca's area and its role in action and language.

19.
Autism Res ; 16(4): 713-722, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738470

RESUMEN

Joint attention (JA) is an important milestone in human infant development and is predictive of the onset of language later in life. Clinically, it has been reported that children at risk for or with a diagnosis of autism spectrum disorder (ASD) perform more poorly on measures of JA compared to neurotypical controls. JA is not unique to humans but has also been reported in great apes and to a lesser extent in more distantly related monkeys. Further, individual differences in JA among chimpanzees are associated with polymorphisms in the vasopressin and oxytocin genes, AVPR1A and OXTR. Here, we tested whether individual variation in DNA methylation of OXTR and AVPR1A were associated with performance on JA tasks in chimpanzees. We found that individual differences in JA performance was associated with AVPR1A methylation, but not OXTR methylation in the chimpanzees. The collective results provide further evidence of the role of AVPR1A in JA abilities in chimpanzees. The results further suggest that methylation values for AVPR1A may be useful biomarkers for identifying individuals at risk for ASD or related neurodevelopmental disorders associated with impairments in JA abilities.


Asunto(s)
Trastorno del Espectro Autista , Oxitocina , Niño , Animales , Humanos , Pan troglodytes/genética , Conducta Social , Individualidad , Trastorno del Espectro Autista/genética , Metilación , Receptores de Vasopresinas/genética , Vasopresinas , Atención
20.
J Neurosci Res ; 101(6): 881-900, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647571

RESUMEN

Aging and neurodegenerative disorders, such as Alzheimer's disease (AD), trigger an immune response known as glial activation in the brain. Recent evidence indicates species differences in inflammatory responses to AD pathology, highlighting the need for additional comparative studies to further understand human-specific neuropathologies. In the present study, we report on the occurrence of astrogliosis, microglial activation, and their relationship with age and AD-like pathology in a cohort of male and female chimpanzees (Pan troglodytes). Chimpanzees with severe astrogliosis exhibited widespread upregulation of hypertrophic astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) throughout all layers of the dorsolateral prefrontal cortex and a loss of the interlaminar palisade. In addition, extreme astrogliosis was associated with increased astrocyte density in the absence of significant microglial activation and AD lesions. A shift from decreased resting to increased phagocytotic microglia occurred with aging, although proliferation was absent and no changes in astrogliosis was observed. Vascular amyloid correlated with decreased astrocyte and microglia densities, while tau lesions were associated with morphological changes in microglia and greater total glia density and glia: neuron ratio. These results further our understanding of inflammatory processes within the chimpanzee brain and provide comparative data to improve our understanding of human aging and neuropathological processes.


Asunto(s)
Enfermedad de Alzheimer , Animales , Masculino , Humanos , Femenino , Enfermedad de Alzheimer/metabolismo , Pan troglodytes , Microglía/metabolismo , Gliosis/patología , Encéfalo/metabolismo , Astrocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA