Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Soc Mass Spectrom ; 35(8): 1891-1901, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39007842

RESUMEN

Native mass spectrometry (MS) is proving to be a disruptive technique for studying the interactions of proteins, necessary for understanding the functional roles of these biomolecules. Recent research is expanding the application of native MS towards membrane proteins directly from isolated membrane preparations or from purified detergent micelles. The former results in complex spectra comprising several heterogeneous protein complexes; the latter enables therapeutic protein targets to be screened against multiplexed preparations of compound libraries. In both cases, the resulting spectra are increasingly complex to assign/interpret, and the key to these new directions of native MS research is the ability to perform native top-down analysis, which allows unambiguous peak assignment. To achieve this, detergent removal is necessary prior to MS analyzers, which allow selection of specific m/z values, representing the parent ion for downstream activation. Here, we describe a novel, enhanced declustering (ED) device installed into the first pumping region of a cyclic IMS-enabled mass spectrometry platform. The device enables declustering of ions prior to the quadrupole by imparting collisional activation through an oscillating electric field applied between two parallel plates. The positioning of the device enables liberation of membrane protein ions from detergent micelles. Quadrupole selection can now be utilized to isolate protein-ligand complexes, and downstream collision cells enable the dissociation and identification of binding partners. We demonstrate that ion mobility (IM) significantly aids in the assignment of top-down spectra, aligning fragments to their corresponding parent ions by means of IM drift time. Using this approach, we were able to confidently assign and identify a novel hit compound against PfMATE, obtained from multiplexed ligand libraries.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteínas de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/análisis , Espectrometría de Movilidad Iónica/métodos , Micelas , Espectrometría de Masas/métodos , Detergentes/química , Iones/química
2.
JACS Au ; 3(7): 2025-2035, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502151

RESUMEN

Carbene footprinting is a recently developed mass spectrometry-based chemical labeling technique that probes protein interactions and conformation. Here, we use the methodology to investigate binding interactions between the protease human Caspase-1 (C285A) and full-length human Gasdermin D (hGSDMD), which are important in inflammatory cell death. GSDMD is cleaved by Caspase-1, releasing its N-terminal domain which oligomerizes in the membrane to form large pores, resulting in lytic cell death. Regions of reduced carbene labeling (masking), caused by protein binding, were observed for each partner in the presence of the other and were consistent with hCaspase-1 exosite and active-site interactions. Most notably, the results showed direct occupancy of hCaspase-1 (C285A) active-site by hGSDMD for the first time. Differential carbene labeling of full-length hGSDMD and the pore-forming N-terminal domain assembled in liposomes showed masking of the latter, consistent with oligomeric assembly and insertion into the lipid bilayer. Interactions between Caspase-1 and the specific inhibitor VRT-043198 were also studied by this approach. In wild-type hCaspase-1, VRT-043198 modifies the active-site Cys285 through the formation of a S,O-hemiacetal. Here, we showed by carbene labeling that this inhibitor can noncovalently occupy the active site of a C285A mutant. These findings add considerably to our knowledge of the hCaspase-1-hGSDMD system.

3.
Nat Chem ; 14(12): 1375-1382, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357787

RESUMEN

G-protein-coupled receptors signal through cognate G proteins. Despite the widespread importance of these receptors, their regulatory mechanisms for G-protein selectivity are not fully understood. Here we present a native mass spectrometry-based approach to interrogate both biased signalling and allosteric modulation of the ß1-adrenergic receptor in response to various ligands. By simultaneously capturing the effects of ligand binding and receptor coupling to different G proteins, we probed the relative importance of specific interactions with the receptor through systematic changes in 14 ligands, including isoprenaline derivatives, full and partial agonists, and antagonists. We observed enhanced dynamics of the intracellular loop 3 in the presence of isoprenaline, which is capable of acting as a biased agonist. We also show here that endogenous zinc ions augment the binding in receptor-Gs complexes and propose a zinc ion-binding hotspot at the TM5/TM6 intracellular interface of the receptor-Gs complex. Further interrogation led us to propose a mechanism in which zinc ions facilitate a structural transition of the intermediate complex towards the stable state.


Asunto(s)
Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Regulación Alostérica , Isoproterenol/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Proteínas de Unión al GTP/metabolismo , Iones , Espectrometría de Masas , Zinc/metabolismo
4.
mBio ; 12(5): e0178721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544275

RESUMEN

Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Colicinas/farmacología , ADN/metabolismo , Hierro/metabolismo , Receptores de Superficie Celular/metabolismo , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Bacteriocinas/genética , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Colicinas/química , Colicinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Proteínas Periplasmáticas/metabolismo , Conformación Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética
5.
JACS Au ; 1(12): 2385-2393, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34977906

RESUMEN

In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.

6.
J Biol Chem ; 295(27): 9147-9156, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32398259

RESUMEN

Colicins are Escherichia coli-specific bacteriocins that translocate across the outer bacterial membrane by a poorly understood mechanism. Group A colicins typically parasitize the proton-motive force-linked Tol system in the inner membrane via porins after first binding an outer membrane protein receptor. Recent studies have suggested that the pore-forming group A colicin N (ColN) instead uses lipopolysaccharide as a receptor. Contrary to this prevailing view, using diffusion-precipitation assays, native state MS, isothermal titration calorimetry, single-channel conductance measurements in planar lipid bilayers, and in vivo fluorescence imaging, we demonstrate here that ColN uses OmpF both as its receptor and translocator. This dual function is achieved by ColN having multiple distinct OmpF-binding sites, one located within its central globular domain and another within its disordered N terminus. We observed that the ColN globular domain associates with the extracellular surface of OmpF and that lipopolysaccharide (LPS) enhances this binding. Approximately 90 amino acids of ColN then translocate through the porin, enabling the ColN N terminus to localize within the lumen of an OmpF subunit from the periplasmic side of the membrane, a binding mode reminiscent of that observed for the nuclease colicin E9. We conclude that bifurcated engagement of porins is intrinsic to the import mechanism of group A colicins.


Asunto(s)
Colicinas/metabolismo , Porinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteriocinas/metabolismo , Sitios de Unión/fisiología , Difusión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Porinas/genética , Unión Proteica/fisiología , Conformación Proteica , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo
7.
Angew Chem Int Ed Engl ; 59(9): 3523-3528, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31886601

RESUMEN

Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.


Asunto(s)
Lípidos/química , Espectrometría de Masas , Proteínas de la Membrana/química , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Simulación de Dinámica Molecular , Presenilinas/química , Presenilinas/metabolismo , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 115(26): 6691-6696, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891712

RESUMEN

Strong interactions between lipids and proteins occur primarily through association of charged headgroups and amino acid side chains, rendering the protonation status of both partners important. Here we use native mass spectrometry to explore lipid binding as a function of charge of the outer membrane porin F (OmpF). We find that binding of anionic phosphatidylglycerol (POPG) or zwitterionic phosphatidylcholine (POPC) to OmpF is sensitive to electrospray polarity while the effects of charge are less pronounced for other proteins in outer or mitochondrial membranes: the ferripyoverdine receptor (FpvA) or the voltage-dependent anion channel (VDAC). Only marginal charge-induced differences were observed for inner membrane proteins: the ammonia channel (AmtB) or the mechanosensitive channel. To understand these different sensitivities, we performed an extensive bioinformatics analysis of membrane protein structures and found that OmpF, and to a lesser extent FpvA and VDAC, have atypically high local densities of basic and acidic residues in their lipid headgroup-binding regions. Coarse-grained molecular dynamics simulations, in mixed lipid bilayers, further implicate changes in charge by demonstrating preferential binding of anionic POPG over zwitterionic POPC to protonated OmpF, an effect not observed to the same extent for AmtB. Moreover, electrophysiology and mass-spectrometry-based ligand-binding experiments, at low pH, show that POPG can maintain OmpF channels in open conformations for extended time periods. Since the outer membrane is composed almost entirely of anionic lipopolysaccharide, with similar headgroup properties to POPG, such anionic lipid binding could prevent closure of OmpF channels, thereby increasing access of antibiotics that use porin-mediated pathways.


Asunto(s)
Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/metabolismo , Porinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Porinas/química , Unión Proteica , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
9.
Nat Protoc ; 13(5): 1106-1120, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29700483

RESUMEN

With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.


Asunto(s)
Espectrometría de Masas/métodos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Multimerización de Proteína
10.
Nat Struct Mol Biol ; 25(3): 279-288, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29434345

RESUMEN

Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.


Asunto(s)
Complejos Multiproteicos/química , Biosíntesis de Proteínas , Multimerización de Proteína , Subunidades de Proteína/biosíntesis , Evolución Molecular , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dominios Proteicos , Ingeniería de Proteínas , Pliegue de Proteína , Subunidades de Proteína/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Solubilidad
11.
Angew Chem Int Ed Engl ; 56(47): 14873-14877, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28960650

RESUMEN

Mapping the interaction sites between membrane-spanning proteins is a key challenge in structural biology. In this study a carbene-footprinting approach was developed and applied to identify the interfacial sites of a trimeric, integral membrane protein, OmpF, solubilised in micelles. The diazirine-based footprinting probe is effectively sequestered by, and incorporated into, the micelles, thus leading to efficient labelling of the membrane-spanning regions of the protein upon irradiation at 349 nm. Areas associated with protein-protein interactions between the trimer subunits remained unlabelled, thus revealing their location.


Asunto(s)
Proteínas de la Membrana/química , Metano/análogos & derivados , Secuencia de Aminoácidos , Sitios de Unión , Cromatografía Liquida , Detergentes/química , Diazometano/química , Metano/química , Micelas , Oxidación-Reducción , Multimerización de Proteína , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
12.
Angew Chem Int Ed Engl ; 56(46): 14463-14468, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28884954

RESUMEN

Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non-covalent interactions we exploit the surface to capture a rapid turnover enzyme-substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high-throughput ligand screening of some of the most challenging drug targets including GPCRs.


Asunto(s)
Proteínas de la Membrana/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Ligandos , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Peso Molecular , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Solubilidad , Propiedades de Superficie
13.
Sci Adv ; 3(6): e1701016, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630934

RESUMEN

G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors belong to the largest family of membrane-embedded cell surface proteins and are involved in a diverse array of physiological processes. Despite progress in the mass spectrometry of membrane protein complexes, G protein-coupled receptors have remained intractable because of their low yield and instability after extraction from cell membranes. We established conditions in the mass spectrometer that preserve noncovalent ligand binding to the human purinergic receptor P2Y1. Results established differing affinities for nucleotides and the drug MRS2500 and link antagonist binding with the absence of receptor phosphorylation. Overall, therefore, our results are consistent with drug binding, preventing the conformational changes that facilitate downstream signaling. More generally, we highlight opportunities for mass spectrometry to probe effects of ligand binding on G protein-coupled receptors.


Asunto(s)
Ligandos , Espectrometría de Masas , Receptores Acoplados a Proteínas G/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Fosforilación , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo , Relación Estructura-Actividad
14.
Structure ; 25(5): 773-782.e5, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28434916

RESUMEN

Select lectins have powerful anti-viral properties that effectively neutralize HIV-1 by targeting the dense glycan shield on the virus. Here, we reveal the mechanism by which one of the most potent lectins, BanLec, achieves its inhibition. We identify that BanLec recognizes a subset of high-mannose glycans via bidentate interactions spanning the two binding sites present on each BanLec monomer that were previously considered separate carbohydrate recognition domains. We show that both sites are required for high-affinity glycan binding and virus neutralization. Unexpectedly we find that BanLec adopts a tetrameric stoichiometry in solution whereby the glycan-binding sites are positioned to optimally target glycosylated viral spikes. The tetrameric architecture, together with bidentate binding to individual glycans, leads to layers of multivalency that drive viral neutralization through enhanced avidity effects. These structural insights will prove useful in engineering successful lectin therapeutics targeting the dense glycan shield of HIV.


Asunto(s)
Antivirales/química , Lectinas de Plantas/química , Polisacáridos/metabolismo , Antivirales/farmacología , Sitios de Unión , VIH-1/química , VIH-1/efectos de los fármacos , Musa/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacología , Polisacáridos/química , Unión Proteica , Multimerización de Proteína
15.
Nature ; 541(7637): 421-424, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28077870

RESUMEN

Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lípidos/química , Lípidos/farmacología , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sitios de Unión/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacología , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Moritella/química , Estabilidad Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Termodinámica , Thermus thermophilus/química
16.
Nat Commun ; 7: 12194, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27432510

RESUMEN

Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σ(R) preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA-σ(R) complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σ(R)-binding residues are sequestered back into its hydrophobic core, releasing σ(R) to activate transcription of anti-oxidant genes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Estrés Oxidativo , Factor sigma/antagonistas & inhibidores , Secuencia de Aminoácidos , Cisteína/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Zinc/metabolismo
17.
Nat Commun ; 7: 11578, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27174498

RESUMEN

The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.


Asunto(s)
Cristalografía por Rayos X/métodos , Modelos Moleculares , Receptores de Prolactina/química , Humanos , Espectroscopía de Resonancia Magnética/métodos , Micelas , Conformación Proteica en Hélice alfa , Dominios Proteicos , Receptores de Prolactina/aislamiento & purificación , Dispersión del Ángulo Pequeño
18.
J Am Soc Mass Spectrom ; 27(6): 1099-104, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27106602

RESUMEN

Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein. Graphical Abstract ᅟ.


Asunto(s)
Iones , Proteínas de la Membrana/química , Espectrometría de Masa por Ionización de Electrospray , Detergentes/química , Micelas
19.
BMC Biol ; 14: 31, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27083547

RESUMEN

BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. CONCLUSIONS: This work characterizes a new type of scaffolding complex, which we term a "shuffle complex", between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Línea Celular , Activación Enzimática , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Pliegue de Proteína , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/química
20.
Nat Methods ; 13(4): 333-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901650

RESUMEN

Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.


Asunto(s)
Lípidos/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Humanos , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA