Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Heliyon ; 10(5): e26646, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455544

RESUMEN

This article presents a novel real-time meta-material (MM) sensor based on a non-invasive method that operates in microwave frequency ranges at 8.524 GHz to measure blood glucose levels with quality factor 184 is designed and fabricated. A cross enclosed between two square shapes produces a strong interaction between glucose samples and electromagnetic waves. In this study, 5 were tested noninvasively using the proposed glucose resonant sensor with a range of glucose-level changes from 50 to 130 mg/dL. For this range of glucose-level changes, the frequency detection resolution is 5.06 MHz/(mg/dL), respectively. Despite simulations, fabrication procedures (F.P.) have been carried out for more precise result verification. For the purpose of qualitative analysis, the proposed MM sensor is considered a viable candidate for determining glucose levels.

2.
Sci Rep ; 14(1): 3196, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326469

RESUMEN

Breeding programs require exhaustive phenotyping of germplasms, which is time-demanding and expensive. Genomic prediction helps breeders harness the diversity of any collection to bypass phenotyping. Here, we examined the genomic prediction's potential for seed yield and nine agronomic traits using 26,171 single nucleotide polymorphism (SNP) markers in a set of 337 flax (Linum usitatissimum L.) germplasm, phenotyped in five environments. We evaluated 14 prediction models and several factors affecting predictive ability based on cross-validation schemes. Models yielded significant variation among predictive ability values across traits for the whole marker set. The ridge regression (RR) model covering additive gene action yielded better predictive ability for most of the traits, whereas it was higher for low heritable traits by models capturing epistatic gene action. Marker subsets based on linkage disequilibrium decay distance gave significantly higher predictive abilities to the whole marker set, but for randomly selected markers, it reached a plateau above 3000 markers. Markers having significant association with traits improved predictive abilities compared to the whole marker set when marker selection was made on the whole population instead of the training set indicating a clear overfitting. The correction for population structure did not increase predictive abilities compared to the whole collection. However, stratified sampling by picking representative genotypes from each cluster improved predictive abilities. The indirect predictive ability for a trait was proportionate to its correlation with other traits. These results will help breeders to select the best models, optimum marker set, and suitable genotype set to perform an indirect selection for quantitative traits in this diverse flax germplasm collection.


Asunto(s)
Lino , Lino/genética , Fitomejoramiento , Fenotipo , Desequilibrio de Ligamiento , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple
5.
Sci Rep ; 13(1): 7373, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147337

RESUMEN

Metamaterials have gained much attention due to their exciting characteristics and potential uses in constructing valuable technologies. This paper presents a double negative square resonator shape metamaterial sensor to detect the material and its thickness. An innovative double-negative metamaterial sensor for microwave sensing applications is described in this paper. It has a highly sensitive Q-factor and has good absorption characteristics approximately equal to one. For the metamaterial sensor, the recommended measurement is 20 by 20 mm. Computer simulation technology (C.S.T.) microwave studios are used to design the metamaterial structure and figure out its reflection coefficient. Various parametric analyses have been performed to optimize the design and size of the structure. The experimental and theoretical results are shown for a metamaterial sensor that is attached to five different materials such as, Polyimide, Rogers RO3010, Rogers RO4350, Rogers RT5880, and FR-4. A sensor's performance is evaluated using three different thicknesses of FR-4. There is a remarkable similarity between the measured and simulated outcomes. The sensitivity values for 2.88 GHz and 3.5 GHz are 0.66% and 0.19%, respectively, the absorption values for both frequencies are 99.9% and 98.9%, respectively, and the q-factor values are 1413.29 and 1140.16, respectively. In addition, the figure of merit (FOM) is analyzed, and its value is 934.18. Furthermore, the proposed structure has been tested against absorption sensor applications for the purpose of verifying the sensor's performance. With a high sense of sensitivity, absorption, and Q-factor, the recommended sensor can distinguish between thicknesses and materials in various applications.

6.
Materials (Basel) ; 16(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770180

RESUMEN

This paper reports a central spiral split-rectangular-shaped metamaterial absorber surrounded by a polarization-insensitive ring resonator for s-band applications. The rated absorption is 99.9% at 3.1 GHz when using a three-layer structure where the top and ground are made of copper and the center dielectric material is a commonly used FR-4 substrate. The central split gaps have an impact on the unit cell by increasing high absorption, and an adequate electric field is apparent in the outer split ring gap. At 3.1 GHz, the permittivity and permeability are negative and positive, respectively, so the proposed unit cell acts as an epsilon negative (ENG) metamaterial absorber. In a further analysis, Roger4450B was used as a substrate and obtained excellent absorption rates of 99.382%, 99.383%, 99.91%, and 95.17% at 1.44, 3.96, 4.205, and 5.025 GHz, respectively, in the S- and C-band regions. This unit cell acts as a single negative metamaterial (SNG) absorber at all resonance frequencies. The S11 and S21 parameters for FR-4 and Rogers4450B were simulated while keeping the polarization angle (θ and φ) at 15, 30, 45, 60, 75, and 90 degrees to measure, permittivity, permeability, reflective index, absorption, and reflection. The values of the reflective index are near zero. Near-zero reflective indexes (NZRI) are widely used in antenna gain propagation. The unit cell fabricated for the FR-4 substrate attained 99.9% absorption. S-band values in the range of (2-4) GHz can be applied for low-frequency radar detection.

7.
Nanomaterials (Basel) ; 12(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500876

RESUMEN

Researchers are trying to work out how to make a broadband response metamaterial absorber (MMA). Electromagnetic (EM) waves that can pass through the atmosphere and reach the ground are most commonly used in the visible frequency range. In addition, they are used to detect faults, inspect tapped live-powered components, electrical failures, and thermal leaking hot spots. This research provides a numerical analysis of a compact split ring resonator (SRR) and circular ring resonator (CRR) based metamaterial absorber (MMA) using a three-layer substrate material configuration for wideband visible optical wavelength applications. The proposed metamaterial absorber has an overall unit cell size of 800 nm × 800 nm × 175 nm in both TE and TM mode simulations and it achieved above 80% absorbance in the visible spectrums from 450 nm to 650 nm wavelength. The proposed MA performed a maximum absorptivity of 99.99% at 557 nm. In addition, the steady absorption property has a broad range of oblique incidence angle stability. The polarization conversion ratio (PCR) is evaluated to ensure that the MMA is perfect. Both TM and TE modes can observe polarization insensitivity and wide-angle incidence angle stability with 18° bending effects. Moreover, a structural study using electric and magnetic fields was carried out to better understand the MMA's absorption properties. The observable novelty of the proposed metamaterial is compact in size compared with reference paper, and it achieves an average absorbance of 91.82% for visible optical wavelength. The proposed MMA also has bendable properties. The proposed MMA validation has been done by two numerical simulation software. The MMA has diverse applications, such as color image, wide-angle stability, substantial absorption, absolute invisible layers, thermal imaging, and magnetic resonance imaging (MRI) applications.

8.
J Vet Med Educ ; : e20220049, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36166193

RESUMEN

Work-based learning (WBL) provides relevant contemporary experience of working environments. Potential benefits for students include developing invaluable skills (clinical, personal, cultural, and professional) and gaining greater awareness of the profession and future career opportunities. However, there are also challenges related to running and sustaining a successful WBL program. In the context of this study, WBL refers to external placements undertaken by final-year students. The aims of the study were to identify ways to optimize the benefits while managing the challenges in delivering WBL in a veterinary curriculum. An in-depth study was undertaken at Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh, where a WBL program has been in place for 20 years. Final-year veterinary students at CVASU were surveyed to ascertain WBL experiences; survey findings were further explored in focus groups with students, recent graduates, faculty, and placement providers. Most agreed that they had sufficient opportunities to observe, assist, and directly handle pet and farm animals with top skills learned, including clinical diagnosis and communication, and recognized the value of learning in professional workplaces. Based on suggested areas of improvement, the following recommendations can be made: carefully selecting placements, adjusting time allocation, improving communication and building strong collaborations with placement providers, allowing students to customize more placements to align with their career preferences, and staffing adequately to arrange placements and manage a WBL program. Overall, results suggest the current WBL arrangements at CVASU are reasonably good, but there are some specific areas for improvement.

9.
PLoS One ; 17(3): e0250310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231054

RESUMEN

Estimation of genetic diversity in rapeseed is important for sustainable breeding program to provide an option for the development of new breeding lines. The objective of this study was to elucidate the patterns of genetic diversity within and among different structural groups, and measure the extent of linkage disequilibrium (LD) of 383 globally distributed rapeseed germplasm using 8,502 single nucleotide polymorphism (SNP) markers. We divided the germplasm collection into five subpopulations (P1 to P5) according to geographic and growth habit-related patterns. All subpopulations showed moderate genetic diversity (average H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of divergence (Fst > 0.24) between most of the combinations. The rutabaga type showed highest divergence with spring and winter types. Higher divergence was also found between winter and spring types. Admixture model based structure analysis, principal component and neighbor-joining tree analysis placed all subpopulations into three distinct clusters. Admixed genotype constituted 29.24% of total genotypes, while remaining 70.76% belongs to identified clusters. Overall, mean linkage disequilibrium was 0.03 and it decayed to its half maximum within < 45 kb distance for whole genome. The LD decay was slower in C genome (< 93 kb); relative to the A genome (< 21 kb) which was confirmed by availability of larger haplotype blocks in C genome than A genome. The findings regarding LD pattern and population structure will help to utilize the collection as an important resource for association mapping efforts to identify genes useful in crop improvement as well as for selection of parents for hybrid breeding.


Asunto(s)
Desequilibrio de Ligamiento
10.
Sci Rep ; 12(1): 4857, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318387

RESUMEN

Broadband absorbers are required for solar energy harvesting because they efficiently absorb the incident photon in the wide-ranging solar spectrum. To ensure high absorption of photons, metamaterial absorbers (MMAs) have been a growing area of interest in recent years. In this article, an MMA is proposed using a metal-insulator-metal (MIM) structure (Ni-SiO2-Ni) that shows a near-unity broadband absorption of wavelengths from 300 to 1600 nm, with a 95.77% average absorption and a peak absorption of 99.999% at 772.82 nm. The MMA is polarization insensitive as well as wide incident angle stable. Analysis of the effects of mechanical bending on the absorption of the proposed structure shows that absorption holds satisfactory values at different degrees of mechanical loading. The suggested MMA unit cell structure was computationally simulated using the Finite Integration Technique (FIT) and verified using the Finite Element Method (FEM). To analyze the feasibility of the proposed MMA as a solar cell, it is investigated with the universal AM 1.5 solar spectrum characteristics. Besides solar energy harvesting, the proposed MMA unit cell may be employed in a variety of diverse optical applications, including sensors, detectors, and imaging.

11.
BMC Genomics ; 21(1): 557, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795254

RESUMEN

BACKGROUND: A sustainable breeding program requires a minimum level of germplasm diversity to provide varied options for the selection of new breeding lines. To maximize genetic gain of the North Dakota State University (NDSU) flax breeding program, we aimed to increase the genetic diversity of its parental stocks by incorporating diverse genotypes. For this purpose, we analyzed the genetic diversity, linkage disequilibrium, and population sub-structure of 350 globally-distributed flax genotypes with 6200 SNP markers. RESULTS: All the genotypes tested clustered into seven sub-populations (P1 to P7) based on the admixture model and the output of neighbor-joining (NJ) tree analysis and principal coordinate analysis were in line with that of structure analysis. The largest sub-population separation arose from a cluster of NDSU/American genotypes with Turkish and Asian genotypes. All sub-populations showed moderate genetic diversity (average H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of divergence (Fst > 0.25) between most of the combinations. A whole collection mantel test showed significant positive correlation (r = 0.30 and p < 0.01) between genetic and geographic distances, whereas it was non-significant for all sub-populations except P4 and P5 (r = 0.251, 0.349 respectively and p < 0.05). In the entire collection, the mean linkage disequilibrium was 0.03 and it decayed to its half maximum within < 21 kb distance. CONCLUSIONS: To maximize genetic gain, hybridization between NDSU stock (P5) and Asian individuals (P6) are potentially the best option as genetic differentiation between them is highest (Fst > 0.50). In contrast, low genetic differentiation between P5 and P2 may enhance the accumulation of favorable alleles for oil and fiber upon crossing to develop dual purpose varieties. As each sub-population consists of many genotypes, a Neighbor-Joining tree and kinship matrix assist to identify distantly related genotypes. These results also inform genotyping decisions for future association mapping studies to ensure the identification of a sufficient number of molecular markers to tag all linkage blocks.


Asunto(s)
Lino , Lino/genética , Variación Genética , Genotipo , Humanos , Desequilibrio de Ligamiento , Fitomejoramiento
12.
Sci Rep ; 10(1): 13086, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753600

RESUMEN

This paper reports on a tunable transmission frequency characteristics-based metamaterial absorber of an X band sensing application with a fractional bandwidth. Tunable resonator metamaterial absorbers fabricated with dielectric surface have been the subject of growing attention of late. Absorbers possess electromagnetic properties and range modification capacity, and they have yet to be studied in detail. The proposed microstructure resonator inspired absorber with triple fractional band absorption consists of two balanced symmetrical vertical patches at the outer periphery and a tiny drop hole at two edges. Experimental verification depicted two absorption bands with single negative (SNG) characteristics for two resonances, but double negative (DNG) for single resonance frequency. The mechanism of sensing and absorption was analyzed using the transmission line principle with useful parameter analysis. Cotton, a hygroscopic fiber with moisture content, was chosen to characterize the proposed absorber for the X band application. The electrical properties of the cotton changed depending on the moisture absorption level. The simulation and the measured absorption approximately justified the result; the simulated absorption was above 90% (at 10.62, 11.64, and 12.8 GHz), although the steady level was 80%. The moisture content of the cotton (at different levels from 0 to 32.13%) was simulated, and the transmission resonance frequency changed its point in two significant ranges. However, comparing the two adopted measurement method and algorithm applied to the S parameter showed a closer variation between the two resonances (11.64 and 12.8 GHz) which signified that a much more accurate measurement of the cotton dielectric constant was possible up to a moisture content of 16.1%. However, certain unwanted changes were noted at 8.4-8.9 GHz and 10.6-12.4 GHz. The proposed triple-band absorber has potential applications in the X band sensing of moisture in capsules or tablet bottles.

13.
Sensors (Basel) ; 20(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545228

RESUMEN

A low-profile high-directivity, and double-negative (DNG) metamaterial-loaded antenna with a slotted patch is proposed for the 5G application. The radiated slotted arm as a V shape has been extended to provide a low-profile feature with a two-isometric view square patch structure, which accelerates the electromagnetic (EM) resonance. Besides, the tapered patch with two vertically split parabolic horns and the unit cell metamaterial expedite achieve more directive radiation. Two adjacent splits with meta units enhance the surface current to modify the actual electric current, which is induced by a substrate-isolated EM field. As a result, the slotted antenna shows a 7.14 dBi realized gain with 80% radiation efficiency, which is quite significant. The operation bandwidth is 4.27-4.40 GHz, and characteristic impedance approximately remains the same (50 Ω) to give a VSWR (voltage Standing wave ratio) of less than 2, which is ideal for the expected application field. The overall size of the antenna is 60 × 40 × 1.52 mm. Hence, it has potential for future 5G applications, like Internet of Things (IoT), healthcare systems, smart homes, etc.

14.
Nanoscale Res Lett ; 14(1): 393, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31879809

RESUMEN

Solar energy is one of the ambient sources where energy can be scavenged easily without pollution. Intent scavenging by the solar cell to recollect energy requires a state-of-the-art technique to expedite energy absorption to electron flow for producing more electricity. Structures of the solar cell have been researched to improve absorption efficiency, though most of them can only efficiently absorb with narrow-angle tolerance and polarization sensitivity. So, there is a strong demand for broadband absorption with minimal polarization sensitivity absorber, which is required for effective solar energy harvesting. In this paper, we proposed a new Split Hexagonal Patch Array (SHPA) shape metamaterial absorber with Double-negative (DNG) characteristics, which will provide a wide absorption band with low polarization sensitivity for solar spectrum energy harvesting. The proposed new SHPA shape consists of six nano-arms with a single vertical split which with arrowhead symmetry. This arm will steer electromagnetic (EM) resonance to acquire absolute negative permittivity and permeability, ensuring DNG property. This DNG metamaterial features analyzed based on the photoconversion quantum method for maximum photon absorption. The symmetric characteristics of the proposed structure enable the absorber to show polarization insensitivity and wide incident angle absorption capabilities. Simulated SHPA shows a visible and ultraviolet (UV) spectrum electromagnetic wave absorption capacity of more than 95%. The quantum method gives an advantage in the conversion efficiency of the absorber, and the numerical analysis of the proposed SHPA structure provides absorbance quality for THz regime energy harvesting through solar cell or photonic application.

15.
Sensors (Basel) ; 19(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621259

RESUMEN

This paper presents an oval-shaped sensor design for the measurement of glucose concentration in aqueous solution. This unit cell sensing device is inspired by metamaterial properties and is analytically described for better parametric study. The mechanism of the sensor is a sensing layer with varying permittivity placed between two nozzle-shaped microstrip lines. Glucose aqueous solutions were characterized considering the water dielectric constant, from 55 to 87, and were identified with a transmission coefficient at 3.914 GHz optimal frequency with double negative (DNG) metamaterial properties. Consequently, the sensitivity of the sensor was estimated at 0.037 GHz/(30 mg/dL) glucose solution. The design and analysis of this sensor was performed using the finite integration technique (FIT)-based Computer Simulation Technology (CST) microwave studio simulation software. Additionally, parametric analysis of the sensing characteristics was conducted using experimental verification for the justification. The performance of the proposed sensor demonstrates the potential application scope for glucose level identification in aqueous solutions regarding qualitative analysis.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/aislamiento & purificación , Simulación por Computador , Glucosa/química , Humanos , Microondas , Programas Informáticos , Agua/química
16.
Sensors (Basel) ; 18(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513675

RESUMEN

In this paper, a dual-band metamaterial absorber (MMA) ring with a mirror reflexed C-shape is introduced for X and Ku band sensing applications. The proposed metamaterial consists of two square ring resonators and a mirror reflexed C-shape, which reveals two distinctive absorption bands in the electromagnetic wave spectrum. The mechanism of the two-band absorber particularly demonstrates two resonance frequencies and absorption was analyzed using a quasi-TEM field distribution. The absorption can be tunable by changing the size of the metallic ring in the frequency spectrum. Design and analysis of the proposed meta-absorber was performed using the finite-integration technique (FIT)-based CST microwave studio simulation software. Two specific absorption peaks value of 99.6% and 99.14% are achieved at 13.78 GHz and 15.3 GHz, respectively. The absorption results have been measured and compared with computational results. The proposed dual-band absorber has potential applications in sensing techniques for satellite communication and radar systems.

17.
Ecohealth ; 15(1): 63-71, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29134437

RESUMEN

Avian influenza is a major animal and public health concern in Bangladesh. A decade after development and implementation of the first national avian influenza and human pandemic influenza preparedness and response plan in Bangladesh, a two-stage qualitative stakeholder analysis was performed in relation to the policy development process and the actual policy. This study specifically aimed to identify the future policy options to prevent and control avian influenza and other poultry-related zoonotic diseases in Bangladesh. It was recommended that the policy should be based on the One Health concept, be evidence-based, sustainable, reviewed and updated as necessary. The future policy environment that is suitable for developing and implementing these policies should take into account the following points: the need to formally engage multiple sectors, the need for clear and acceptable leadership, roles and responsibilities and the need for a common pool of resources and provision for transferring resources. Most of these recommendations are directed towards the Government of Bangladesh. However, other sectors, including research and poultry production stakeholders, also have a major role to play to inform policy making and actively participate in the multi-sectoral approach.


Asunto(s)
Gripe Aviar/epidemiología , Formulación de Políticas , Productos Avícolas/virología , Animales , Bangladesh/epidemiología , Aves , Características Culturales , Guías como Asunto , Entrevistas como Asunto , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA