Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Ann Neurol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230499

RESUMEN

OBJECTIVE: Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes. METHODS: Whole exome sequencing of the probands was performed to identify pathogenic variants. We validated the mitochondrial defect by analyzing mtDNA, mitochondrial dNTP pools, respiratory chain activities, and GUK1 activity. To confirm pathogenicity of GUK1 deficiency, we expressed 2 GUK1 isoforms in patient cells. RESULTS: We identified biallelic GUK1 pathogenic variants in all 4 probands who presented with ptosis, ophthalmoparesis, and myopathic proximal limb weakness, as well as variable hepatopathy and altered T-lymphocyte profiles. Muscle biopsies from all probands showed mtDNA depletion, deletions, or both, as well as reduced activities of mitochondrial respiratory chain enzymes. GUK1 encodes guanylate kinase, originally identified as a cytosolic enzyme. Long and short isoforms of GUK1 exist. We observed that the long isoform is intramitochondrial and the short is cytosolic. In probands' fibroblasts, we noted decreased GUK1 activity causing unbalanced mitochondrial dNTP pools and mtDNA depletion in both replicating and quiescent fibroblasts indicating that GUK1 deficiency impairs de novo and salvage nucleotide pathways. Proband fibroblasts treated with deoxyguanosine and/or forodesine, a purine phosphatase inhibitor, ameliorated mtDNA depletion, indicating potential pharmacological therapies. INTERPRETATION: Primary GUK1 deficiency is a new and potentially treatable cause of MDDS. The cytosolic isoform of GUK1 may contribute to the T-lymphocyte abnormality, which has not been observed in other MDDS disorders. ANN NEUROL 2024.

2.
Stem Cell Rev Rep ; 19(8): 2980-2990, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37702917

RESUMEN

Embryonic development is a continuum in vivo. Transcriptional analysis can separate established human embryonic stem cells (hESC) into at least four distinct developmental pluripotent stages, two naïve and two primed, early and late relative to the intact epiblast. In this study we primarily show that exposure of frozen human blastocysts to an inhibitor of checkpoint kinase 1 (CHK1) upon thaw greatly enhances establishment of karyotypically normal late naïve hESC cultures. These late naïve cells are plastic and can be toggled back to early naïve and forward to early primed pluripotent stages. The early primed cells are transcriptionally equivalent to the post inner cell mass intermediate (PICMI) stage seen one day following transfer of human blastocysts into in vitro culture and are stable at an earlier stage than conventional primed hESC.


Asunto(s)
Técnicas de Cultivo de Célula , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células Madre Embrionarias Humanas , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Blastocisto/citología , Células Madre Pluripotentes/citología
3.
Cell Syst ; 13(6): 438-453.e5, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452605

RESUMEN

Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.


Asunto(s)
Pérdida de Heterocigocidad , Análisis de la Célula Individual , Animales , Encéfalo , Ratones , Neurogénesis , Estudios Retrospectivos , Análisis de la Célula Individual/métodos
4.
Cell Stem Cell ; 28(5): 790-792, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961760

RESUMEN

In this issue of Cell Stem Cell, Daniel Bauer and colleagues investigate the pathogenesis of ELANE-associated severe congenital neutropenia (SCN) and describe two potentially universal gene correction strategies for autosomal dominant disorders (Rao et al., 2021). One exploits nonsense-mediated decay to prevent translation of the mutant allele. The other unexpectedly blocks translation by shortening the 3'-UTR.


Asunto(s)
Elastasa de Leucocito , Neutropenia , Edición Génica , Humanos , Elastasa de Leucocito/genética , Mutación , Neutropenia/genética , Virulencia
5.
Blood Adv ; 5(3): 687-699, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560381

RESUMEN

RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados , Trastornos de las Plaquetas Sanguíneas , Leucemia Mieloide Aguda , Trastornos de las Plaquetas Sanguíneas/genética , Plaquetas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Humanos
6.
J Biol Chem ; 295(21): 7492-7500, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32299910

RESUMEN

Severe congenital neutropenia (SCN) is characterized by a near absence of neutrophils, rendering individuals with this disorder vulnerable to recurrent life-threatening infections. The majority of SCN cases arise because of germline mutations in the gene elastase, neutrophil-expressed (ELANE) encoding the neutrophil granule serine protease neutrophil elastase. Treatment with a high dose of granulocyte colony-stimulating factor increases neutrophil production and reduces infection risk. How ELANE mutations produce SCN remains unknown. The currently proposed mechanism is that ELANE mutations promote protein misfolding, resulting in endoplasmic reticulum stress and activation of the unfolded protein response (UPR), triggering death of neutrophil precursors and resulting in neutropenia. Here we studied the ELANE mutation p.G185R, often associated with greater clinical severity (e.g. decreased responsiveness to granulocyte colony-stimulating factor and increased leukemogenesis). Using an inducible expression system, we observed that this ELANE mutation diminishes enzymatic activity and granulocytic differentiation without significantly affecting cell proliferation, cell death, or UPR induction in murine myeloblast 32D and human promyelocytic NB4 cells. Impaired differentiation was associated with decreased expression of genes encoding critical hematopoietic transcription factors (Gfi1, Cebpd, Cebpe, and Spi1), cell surface proteins (Csf3r and Gr1), and neutrophil granule proteins (Mpo and Elane). Together, these findings challenge the currently prevailing model that SCN results from mutant ELANE, which triggers endoplasmic reticulum stress, UPR, and apoptosis.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Regulación Enzimológica de la Expresión Génica , Granulocitos/enzimología , Elastasa de Leucocito , Mutación Missense , Neutropenia/congénito , Respuesta de Proteína Desplegada , Sustitución de Aminoácidos , Animales , Apoptosis , Línea Celular Tumoral , Síndromes Congénitos de Insuficiencia de la Médula Ósea/enzimología , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Estrés del Retículo Endoplásmico , Humanos , Elastasa de Leucocito/biosíntesis , Elastasa de Leucocito/genética , Ratones , Neutropenia/enzimología , Neutropenia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32208489

RESUMEN

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Epigénesis Genética , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Linaje , Fenotipo
9.
PLoS Genet ; 14(9): e1007642, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30216339

RESUMEN

PAX5, one of nine members of the mammalian paired box (PAX) family of transcription factors, plays an important role in B cell development. Approximately one-third of individuals with pre-B acute lymphoblastic leukemia (ALL) acquire heterozygous inactivating mutations of PAX5 in malignant cells, and heterozygous germline loss-of-function PAX5 mutations cause autosomal dominant predisposition to ALL. At least in mice, Pax5 is required for pre-B cell maturation, and leukemic remission occurs when Pax5 expression is restored in a Pax5-deficient mouse model of ALL. Together, these observations indicate that PAX5 deficiency reversibly drives leukemogenesis. PAX5 and its two most closely related paralogs, PAX2 and PAX8, which are not mutated in ALL, exhibit overlapping expression and function redundantly during embryonic development. However, PAX5 alone is expressed in lymphocytes, while PAX2 and PAX8 are predominantly specific to kidney and thyroid, respectively. We show that forced expression of PAX2 or PAX8 complements PAX5 loss-of-function mutation in ALL cells as determined by modulation of PAX5 target genes, restoration of immunophenotypic and morphological differentiation, and, ultimately, reduction of replicative potential. Activation of PAX5 paralogs, PAX2 or PAX8, ordinarily silenced in lymphocytes, may therefore represent a novel approach for treating PAX5-deficient ALL. In pursuit of this strategy, we took advantage of the fact that, in kidney, PAX2 is upregulated by extracellular hyperosmolarity. We found that hyperosmolarity, at potentially clinically achievable levels, transcriptionally activates endogenous PAX2 in ALL cells via a mechanism dependent on NFAT5, a transcription factor coordinating response to hyperosmolarity. We also found that hyperosmolarity upregulates residual wild type PAX5 expression in ALL cells and modulates gene expression, including in PAX5-mutant primary ALL cells. These findings specifically demonstrate that osmosensing pathways may represent a new therapeutic target for ALL and more broadly point toward the possibility of using gene paralogs to rescue mutations driving cancer and other diseases.


Asunto(s)
Riñón/metabolismo , Osmorregulación , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Linfocitos B/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Soluciones Hipertónicas/farmacología , Riñón/efectos de los fármacos , Masculino , Ratones , Mutación , Osmorregulación/efectos de los fármacos , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Artículo en Inglés | MEDLINE | ID: mdl-29469136

RESUMEN

BACKGROUND: Leri-Weill syndrome (LWS) ranks among conditions with short stature homeobox gene (SHOX) haploinsufficiency. Data on possible association of SHOX aberrations with malignant diseases are scarce. METHODS AND RESULTS: We report a unique case of an 8-year-old girl who was successfully treated for acute lymphoblastic leukemia (pre-B ALL, intermediate risk) and was subsequently diagnosed with LWS due to characteristic clinical appearance (short disproportionate stature, Madelung deformity of the wrist) and molecular genetic examination (complete deletion of SHOX). An identical SHOX deletion was identified also in the patient's mother. Leukemic cells of the patient were retrospectively examined by array comparative genomic hybridization (aCGH), which revealed five regions of deletions at chromosome X, including the SHOX gene locus. CONCLUSION: Growth retardation in children with hemato-oncologic malignancies cannot always be attributed to cytotoxic treatment and should be carefully evaluated, especially with regards to growth hormone therapy.


Asunto(s)
Eliminación de Gen , Trastornos del Crecimiento/complicaciones , Trastornos del Crecimiento/genética , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Niño , Hibridación Genómica Comparativa , Femenino , Humanos , Perdida de Seguimiento , Linaje , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
11.
Semin Hematol ; 54(2): 81-86, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28637621

RESUMEN

The GATA2 gene codes for a hematopoietic transcription factor that through its two zinc fingers (ZF) can occupy GATA-DNA motifs in a countless number of genes. It is crucial for the proliferation and maintenance of hematopoietic stem cells. During the past 5 years, germline heterozygous mutations in GATA2 were reported in several hundred patients with various phenotypes ranging from mild cytopenia to severe immunodeficiency involving B cells, natural killer cells, CD4+ cells, monocytes and dendritic cells (MonoMAC/DCML), and myeloid neoplasia. Some patients additionally show syndromic features such as congenital deafness and lymphedema (originally defining the Emberger syndrome) or pulmonary disease and vascular problems. The common clinical denominator in all reported cohorts is the propensity for myeloid neoplasia (myelodysplastic syndrome [MDS], myeloproliferative neoplasms [MPN], chronic myelomonocytic leukemia [CMML], acute myeloid leukemia [AML]) with an overall prevalence of approximately 75% and a median age of onset of roughly 20 years. Three major mutational types are encountered in GATA2-deficient patients: truncating mutations prior to ZF2, missense mutations within ZF2, and noncoding variants in the +9.5kb regulatory region of GATA2. Recurrent somatic lesions comprise monosomy 7 and trisomy 8 karyotypes and mutations in SETBP1 and ASXL1 genes. The high risk for progression to advanced myeloid neoplasia and life-threatening infectious complications guide decision-making towards timely stem cell transplantation.


Asunto(s)
Factor de Transcripción GATA2/deficiencia , Predisposición Genética a la Enfermedad/genética , Neoplasias Hematológicas/genética , Trastornos Mieloproliferativos/genética , Factor de Transcripción GATA2/genética , Humanos
12.
Blood ; 129(15): 2103-2110, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28179280

RESUMEN

GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.


Asunto(s)
Factor de Transcripción GATA1 , Factor de Transcripción GATA2 , Enfermedades Hematológicas , Hematopoyesis , Mutación , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Animales , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/metabolismo , Humanos
13.
Biochem Pharmacol ; 131: 52-67, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28193451

RESUMEN

Cathepsin C (CatC) is a tetrameric cysteine dipeptidyl aminopeptidase that plays a key role in activation of pro-inflammatory serine protease zymogens by removal of a N-terminal pro-dipeptide sequence. Loss of function mutations in the CatC gene is associated with lack of immune cell serine protease activities and cause Papillon-Lefèvre syndrome (PLS). Also, only very low levels of elastase-like protease zymogens are detected by proteome analysis of neutrophils from PLS patients. Thus, CatC inhibitors represent new alternatives for the treatment of neutrophil protease-driven inflammatory or autoimmune diseases. We aimed to experimentally inactivate and lower neutrophil elastase-like proteases by pharmacological blocking of CatC-dependent maturation in cell-based assays and in vivo. Isolated, immature bone marrow cells from healthy donors pulse-chased in the presence of a new cell permeable cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites. These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases, which opens new perspectives for therapeutic applications in humans.


Asunto(s)
Catepsina C/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Neutrófilos/enzimología , Serina Proteasas/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Estudios de Casos y Controles , Femenino , Humanos , Elastasa de Leucocito/sangre , Macaca fascicularis , Enfermedad de Papillon-Lefevre/enzimología
14.
Cold Spring Harb Mol Case Stud ; 2(6): a001222, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27900365

RESUMEN

Adult-onset Niemann-Pick disease type C (NPC) is an infrequent presentation of a rare neurovisceral lysosomal lipid storage disorder caused by autosomal recessive mutations in NPC1 (∼95%) or NPC2 (∼5%). Our patient was diagnosed at age 33 when he presented with a 10-yr history of difficulties in judgment, concentration, speech, and coordination. A history of transient neonatal jaundice and splenomegaly with bone marrow biopsy suggesting a lipid storage disorder pointed to NPC; biochemical ("variant" level cholesterol esterification) and ultrastructural studies in adulthood confirmed the diagnosis. Genetic testing revealed two different missense mutations in the NPC1 gene-V950M and N1156S. Symptoms progressed over >20 yr to severe ataxia and spasticity, dementia, and dysphagia with aspiration leading to death. Brain autopsy revealed mild atrophy of the cerebrum and cerebellum. Microscopic examination showed diffuse gray matter deposition of balloon neurons, mild white matter loss, extensive cerebellar Purkinje cell loss with numerous "empty baskets," and neurofibrillary tangles predominantly in the hippocampal formation and transentorhinal cortex. We performed whole-genome sequencing to examine whether the patient harbored variants outside of the NPC1 locus that could have contributed to his late-onset phenotype. We focused analysis on genetic modifiers in pathways related to lipid metabolism, longevity, and neurodegenerative disease. We identified no rare coding variants in any of the pathways examined nor was the patient enriched for genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) associated with longevity or altered lipid metabolism. In light of these findings, this case provides support for the V950M variant being sufficient for adult-onset NPC disease.


Asunto(s)
Proteínas Portadoras/genética , Glicoproteínas de Membrana/genética , Enfermedad de Niemann-Pick Tipo C/genética , Secuencia de Bases , Encéfalo/citología , Encéfalo/patología , Proteínas Portadoras/metabolismo , Demencia/genética , Pruebas Genéticas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Glicoproteínas de Membrana/metabolismo , Mutación , Mutación Missense , Enfermedades Neurodegenerativas/genética , Ovillos Neurofibrilares/metabolismo , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/genética , Secuenciación Completa del Genoma/métodos
15.
Science ; 353(6298): aaf7907, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27229144

RESUMEN

Multicellular systems develop from single cells through distinct lineages. However, current lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Linaje de la Célula , Rastreo Celular/métodos , Endonucleasas , Ingeniería Genética/métodos , Animales , Proteína 9 Asociada a CRISPR , División Celular/genética , Código de Barras del ADN Taxonómico , Mutación , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Pez Cebra , Cigoto
17.
J Clin Invest ; 125(8): 3103-16, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26193632

RESUMEN

Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBPß-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.


Asunto(s)
Enfermedades Genéticas Congénitas , Células Madre Pluripotentes Inducidas/enzimología , Elastasa de Leucocito , Mielopoyesis/genética , Neutropenia , Neutrófilos/enzimología , Mutación Puntual , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico/genética , Femenino , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Precursoras de Granulocitos/enzimología , Humanos , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Masculino , Respuesta de Proteína Desplegada/genética
18.
Br J Haematol ; 171(1): 13-28, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26018193

RESUMEN

Lymphocytes are unique among cells in that they undergo programmed DNA breaks and translocations, but that special property predisposes them to chromosomal instability (CIN), a cardinal feature of neoplastic lymphoid cells that manifests as whole chromosome- or translocation-based aneuploidy. In several lymphoid malignancies translocations may be the defining or diagnostic markers of the diseases. CIN is a cornerstone of the mutational architecture supporting lymphoid neoplasia, though it is perhaps one of the least understood components of malignant transformation in terms of its molecular mechanisms. CIN is associated with prognosis and response to treatment, making it a key area for impacting treatment outcomes and predicting prognoses. Here we will review the types and mechanisms of CIN found in Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma and the lymphoid leukaemias, with emphasis placed on pathogenic mutations affecting DNA recombination, replication and repair; telomere function; and mitotic regulation of spindle attachment, centrosome function, and chromosomal segregation. We will discuss the means by which chromosome-level genetic aberrations may give rise to multiple pathogenic mutations required for carcinogenesis and conclude with a discussion of the clinical applications of CIN and aneuploidy to diagnosis, prognosis and therapy.


Asunto(s)
Inestabilidad Cromosómica , Roturas del ADN , Replicación del ADN , ADN de Neoplasias , Neoplasias Hematológicas , Recombinación Genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos
19.
Nat Genet ; 47(2): 180-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25581430

RESUMEN

We report germline missense mutations in ETV6 segregating with the dominant transmission of thrombocytopenia and hematologic malignancy in three unrelated kindreds, defining a new hereditary syndrome featuring thrombocytopenia with susceptibility to diverse hematologic neoplasms. Two variants, p.Arg369Gln and p.Arg399Cys, reside in the highly conserved ETS DNA-binding domain. The third variant, p.Pro214Leu, lies within the internal linker domain, which regulates DNA binding. These three amino acid sites correspond to hotspots for recurrent somatic mutation in malignancies. Functional studies show that the mutations abrogate DNA binding, alter subcellular localization, decrease transcriptional repression in a dominant-negative fashion and impair hematopoiesis. These familial genetic studies identify a central role for ETV6 in hematopoiesis and malignant transformation. The identification of germline predisposition to cytopenias and cancer informs the diagnosis and medical management of at-risk individuals.


Asunto(s)
Neoplasias Hematológicas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombocitopenia/genética , Proliferación Celular , Exones/genética , Femenino , Genes Reporteros , Mutación de Línea Germinal , Células HeLa , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Linaje , Estructura Terciaria de Proteína , Proteínas Recombinantes , Análisis de Secuencia de ARN , Proteína ETS de Variante de Translocación 6
20.
PLoS One ; 9(9): e106744, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25192356

RESUMEN

Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.


Asunto(s)
Anatomía/educación , Educación Médica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fibrosis Pulmonar Idiopática/genética , Mucina 5B/genética , Análisis de Secuencia de ADN/métodos , Cadáver , Genoma Humano , Humanos , Fibrosis Pulmonar Idiopática/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA