Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Environ Manage ; 369: 122264, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213851

RESUMEN

Global grassland degradation poses a significant threat to the sustainable socio-economic development of humanity. However, this trend can be effectively mitigated through scientifically sound and rational grassland improvement measures. Grassland improvement utilizes the theory of pratacultural science, especially the theory of the four production levels of grassland agro-ecosystems, to solve the fundamental contradiction between the seasonal imbalance of grassland supply and livestock demand through integrates a number of improvement techniques. In order to clarify the implementation subject, target and specific measures of grassland improvement and to improve the science and efficiency of management and conservation, we classify grassland improvement into four types according to the target, scale and attributes of grassland and livestock feedback mechanism. Grassland improvement is generally based on one key technology, with multiple technologies used in combination, and synergy or superposition formed between integrated technologies. Individual technologies mainly include enclosure of livestock, reclamation, ripping, overseeding, fertilization, irrigation, fire work and grazing management, while integrated technologies are a combination of two or more technologies. Compared to individual techniques, the integrated approach resulted in a significant enhancement of community aboveground biomass by 17-38% and species richness by 2-24%, with no discernible impact on soil properties in the short term. The establishment of a standardized grazing-based improvement process while adhering to the principles of improvement after utilization, comprehensiveness, standardization and scale consistence to improve the structure and function of grassland ecosystems. Strategy of grassland improvement reassesses "nuisance" species as "citizens" of the ecosystem because they supply productivity, species biodiversity and other ecosystem services, and they can be managed at an unharmful and even benefitful level through identifying the ecological and economic thresholds.


Asunto(s)
Conservación de los Recursos Naturales , Pradera , Conservación de los Recursos Naturales/métodos , Animales , Ganado , Ecosistema , Biomasa , Biodiversidad
2.
J Environ Manage ; 368: 122121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39121623

RESUMEN

Grazing plays a key role in ecosystem biogeochemistry, particularly soil carbon (C) pools. The non-trophic interactions between herbivores and soil processes through herbivore trampling have recently attracted extensive attention. However, their concurrent and legacy effects on the ecosystem properties and processes are still not clear, due to their effects being hard to separate via field experiments. In this study, we conducted a 2-year simulated-sheep-trampling experiment with four trampling intensity treatments (i.e., T0, T40, T80, and T120 for 0, 40, 80, and 120 hoofprints m-2, respectively) in a typical steppe to explore the concurrent and legacy effects of trampling on grassland ecosystem properties and processing. In 2017 (trampling treatment year), we found that trampling decreased aboveground biomass (AGB) of plant community and community-weighted mean shoot C concentration (CWM C), soil available nitrogen (N) and available phosphorus (P), but did not affect plant species diversity and belowground biomass (BGB). We show that compared with T0, trampling increased soil bulk density (BD) at T80, and decreased soil organic carbon (SOC) stocks. After the cessation of trampling for two years (i.e., in 2019), previous trampling increased plant diversity and BGB, reaching the highest values at T80, but decreased soil available N and available P. Compared with T0, previous trampling significantly increased soil BD at T120, while significantly decreased CWM C at T80 and T120, and reduced SOC stocks at T80. Compared with 2017, the trampling negative legacy effects amplified at T80 but weakened at T40 and T120. We also show that trampling-induced decreases in soil available N, AGB of Fabaceae and CWM C were the main predictors of decreasing SOC stocks in 2017, while previous trampling-induced legacy effects on soil available P, AGB of Poaceae and CWM C contributed to the variations of SOC stocks in 2019. Taken together, short-term trampling with low intensity could maintain most plant functions, while previous trampling with low intensity was beneficial to most plant and soil functions. The results of this study show that T40 caused by sheep managed at a stocking rate of 2.7 sheep ha-1 is most suitable for grassland adaptive management in the typical steppe. The ecosystem functions can be maintained under a high stocking rate through the process of providing enough time to rebuild sufficient vegetation cover and restore soil through measures such as regional rotational grazing and seasonal grazing.


Asunto(s)
Carbono , Ecosistema , Suelo , Suelo/química , Carbono/análisis , Animales , China , Ovinos , Pradera , Biomasa , Herbivoria , Nitrógeno/análisis
3.
Sci Total Environ ; 949: 174931, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39043300

RESUMEN

Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.


Asunto(s)
Animales Domésticos , Antibacterianos , Bacteriófagos , Bacteriófagos/fisiología , Animales , Terapia de Fagos , Acuicultura , Bacterias/virología , Ganado , Aves de Corral
4.
Sci Total Environ ; 931: 172670, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38679109

RESUMEN

The trait-based unidimensional plant economics spectrum provides a valuable framework for understanding plant adaptation strategies to the environment. However, it is still uncertain whether there is a general multidimensionality of how variation of both leaf and fine root traits are influenced by environmental factors, and how these relate to microbial resource strategies. Here, we examined the coordination patterns of four pairs of similar leaf and fine root traits of herbaceous plants in an alpine meadow at the community-level, and their environmental driving patterns. We then assessed their correlation with microbial life-history strategies, as these exhibit analogous resource strategies with plants in terms of growth and resource utilization efficiency. Results exhibited an analogous multidimensionality of the economics spectrum for leaf and fine root traits: the first dimension, collaboration gradient, primarily represented a tradeoff between lifespan and resource foraging efficiency; the second dimension, conservation gradient, primarily represented a tradeoff between conservation and acquisition in resource uptake. Climate variables had a stronger impact on both dimensions for leaf and fine root traits than soil variables did; whereas, the primary drivers were more complex for fine root traits than for leaf traits. The collaboration gradient of leaf and fine root traits exhibited consistent relationships with soil microbial life-history strategies, both showed negative and positive correlation with bacterial and fungal strategies, respectively. Our findings suggest that both leaves and fine roots have general multidimensional strategies for adapting to new environments and provide a solid basis for further understanding the relationships between the adaptive strategies of plants and microbes.


Asunto(s)
Hojas de la Planta , Raíces de Plantas , Microbiología del Suelo , Raíces de Plantas/microbiología , Plantas , Pradera , Fenómenos Fisiológicos de las Plantas
5.
Sci Total Environ ; 930: 172787, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677430

RESUMEN

Grazing is widely used in more than one-forth of global terrestrial ecosystems, with three quarters are distributed on complex topography. Grazing and topography have both resulted in degradation of approximately 49 % of natural grasslands. However, research on the interaction between topography and livestock exclusion on grassland characteristics is scarce. This study was carried out on a typical steppe to explore the effect of topography and enclosure year on vegetation characteristics. Aboveground biomass, and species richness were examined for three different enclosure years (0, 3, and 6 years), on four slopes (0°, 15°, 30°, and 45° slope), and three aspects (flat, shady and sunny). The results indicated that: The aboveground biomass on the 0° slope had a greater value after 6 years of the enclosure. Aboveground biomass increased with the increasing enclosure year, while it decreased with increasing slope except enclosure for 0 year on shady slope. Aboveground biomass on the shady slopes was greater than on the sunny slopes. Species richness of community and perennial plants increased with increasing slope and enclosure year. The annual plants richness inversely correlated with slope and enclosure year. All plant diversity indexes increased with increasing enclosure year. Margalef and Shannon-wiener indexes decreased with increasing slope, while Simpson and Pielou indexes increased. This paper demonstrates that aspect, slope and enclosure affect aboveground biomass by affecting other vegetation characteristics. In conclusion, grassland production can be improved with moderate livestock exclusion under different topography.


Asunto(s)
Biodiversidad , Biomasa , Pradera , Ganado , China , Animales , Plantas , Ecosistema , Herbivoria , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales
6.
J Environ Manage ; 356: 120679, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531141

RESUMEN

Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude. Measurements of GHG emissions at early seedling growth in the mesocosm experiment using static chamber method showed a strong increase in the cumulative emissions of CO2 (5.71%-9.19%) and N2O (11.36%-13.64%) (p < 0.05), as well as an elevated CH4 uptake (2.75%-5.50%) in sites where the four grass species were introduced, compared to bare soil. Consequently, there was a substantial rise in global warming potential (13.87%-16.33%) (p < 0.05) at grass-introduced sites. Redundancy analysis showed that seed traits, plant biomass, and seedling emergence percentage were the main driving biotic factors of three GHGs fluxes. Our study unveils the potential risk of escalating GHG emissions induced by introducing high altitude grasses to low altitude bare soil, elucidating the mechanism through linking seed traits with seedling establishment and environmental feedback. Furthermore, this offers a new perspective for assessing the impact of grass introduction on ecological environment of introduced site.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Ecosistema , Plantones/química , Poaceae , Altitud , Suelo , Metano/análisis , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
7.
Sci Total Environ ; 922: 171171, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38402971

RESUMEN

The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions. Shannon-Wiener and Species richness index of grassland were significantly decreased by grazing and mowing. Plant diversity was positively correlated with annual precipitation (AP) and negatively correlated with annual mean temperature (AMT). AP was the primary regulator of plant diversity. Grazing and mowing decreased TC levels in grasslands compared with enclosures, especially in topsoil (0-20 cm). The average TC content was decreased by 58 % and 36 % in the 0-10 cm soil layer, while it was decreased by 68 % and 39 % in 10-20 cm soil layer. TC was positively correlated with AP and negatively correlated with AMT. Principal component analysis (PCA) showed that plant diversity was positively correlated with soil TC, and the correlation decreased with an increase in the soil depth. Overall, this study provides a theoretical basis for predicting soil carbon storage in grasslands under human disturbances and climate change impacts.


Asunto(s)
Ecosistema , Pradera , Humanos , Biomasa , Suelo , China , Plantas , Carbono/análisis
8.
J Anim Sci ; 1022024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366060

RESUMEN

The purpose of this study was to evaluate the differences in annual pasture and native pasture on dry matter (DM) intake, nutrient digestibility, nitrogen (N) and energy utilization, and methane (CH4) emission of grazing sheep, and to provide the basis for rational livestock grazing in salinized regions. The study used 10 male Hu sheep ♀ × thin-tailed Han sheep ♂ rams (20 ±â€…5 kg) aged 5 mo. Sheep grazing was conducted in annual pasture and native pasture using a 2 × 2 Latin square design. After a 15-d adaptation period for grazing, the digestion and metabolism experiment of sheep were conducted, while CH4 emissions were measured using sulfur hexafluoride tracer gas. DM intake did not differ between annual pasture and native pasture (P = 0.386). Meanwhile, the digestibility of DM (P < 0.001), neutral detergent fiber (P < 0.001), acid detergent fiber (P < 0.01), crude protein (P < 0.001), and ether extract (P < 0.001) of sheep grazing on native pasture was significantly higher than that of annual pasture. Sheep grazing on native pasture had increased N intake (P < 0.001) and N retained (P < 0.001) compared with those grazing on annual pasture. Digestion energy (P < 0.05) and metabolic energy (P < 0.01) of sheep grazing on annual pasture were significantly improved compared with those on native pasture, while fecal energy (P < 0.001), urine energy (P < 0.001) and CH4 energy (CH4-E) output (P < 0.001) and CH4 emission (P < 0.001) of sheep grazing on annual pasture were significantly decreased. The CH4-E/gross energy (GE) values of sheep grazing on annual pasture and native pasture were 0.09 and 0.10, respectively. In conclusion, grazing sheep have higher N utilization on native pasture, whereas grazing sheep have higher energy utilization and low CH4 emissions in annual pasture. In conclusion, annual pasture has a lower CH4-E/GE compared to native pasture, which helps in reducing environmental pollution.


The reduction of methane (CH4) emissions and nitrogen (N) excretion from livestock production systems can help mitigate environmental impact and improve feeding efficiency. The energy requirements of livestock are crucial for enhancing their performance and minimizing environmental impact. It is imperative to accurately ascertain the N and energy efficiency, and CH4 emissions associated with sheep grazing across diverse grassland ecosystems to optimize forage resource utilization without compromising livestock production performance, thereby facilitating sustainable grassland management and grazing practices. Sheep grazing on native pasture had higher nutrient digestibility and N utilization, while sheep grazing on annual pasture showed higher energy utilization and less CH4 emissions. CH4-energy/gross energy for grazing sheep on annual pasture and native pasture was 0.09 and 0.10, respectively. This study assessed the differences in N and energy utilization and CH4 emissions, among sheep grazing on different grasses, providing data support for the development of more rational livestock grazing methods.


Asunto(s)
Alimentación Animal , Dieta , Ovinos , Masculino , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Metano/metabolismo , Nitrógeno/metabolismo , Detergentes , Oveja Doméstica , Digestión
9.
Environ Res ; 246: 118126, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199463

RESUMEN

Livestock grazing is an influencing factor playing a key role in shaping the plant community, microbial community, and soil properties in grassland ecosystems. Northern China's Loess Plateau has been used for livestock grazing for centuries and is a vulnerable ecosystem. In this study, the fates of bacterial and fungal communities of the typical steppe of the Loess Plateau were investigated under increasing grazing intensities practiced in summer and winter seasons. The results revealed changes in soil physiochemical properties, plant community properties, and microbial diversity in response to alterations in the grazing intensity. The alpha diversity of microbial communities (including bacteria and fungi) exhibited an uneven trend during summer grazing due to an increase in grazing intensity, but it decreased during winter grazing; however, the observed changes were not significant. The beta diversity of the bacterial community was highly influenced by grazing intensity, the summer community clustered near nongrazing, and the winter community presented significantly different results. The beta diversity of the fungal community was not influenced by grazing intensity or season. Grazing induced the growth of fast-growing bacteria (such as Actinobacteria and Firmicutes) and saprophytic fungi and a reduction in overall pathogenic traits. Co-occurrence network analysis and a structural equation model revealed changes in soil and plant properties (such as soil nitrogen level, soil organic carbon level, aboveground biomass, and litter biomass), with an increase in grazing intensity contributing to alterations in bacterial and fungal diversities. This finding demonstrates that grazing intensity can directly affect soil microbes and play an indirect role by modifying soil nutrients and reducing plant biomass, which eventually contributes to changes in microbial communities. Overall, implementing low grazing intensity is suggested for maintaining the microbial community structure the same as that of the native microbiome (ungrazed) in the steppe ecosystems.


Asunto(s)
Ecosistema , Microbiota , Estaciones del Año , Carbono/análisis , Suelo/química , Biomasa , Microbiología del Suelo , Plantas , Bacterias
10.
Sci Total Environ ; 916: 169999, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242471

RESUMEN

The use of taste agents to regulate the grazing behavior of livestock is a new attempt in pasture management, but the effects on grassland plant communities are not clear at present. Therefore, the following scientific questions need to be addressed: (1) how do different taste agents affected plant community structure by changing feed intake? (2) What was the mechanism of this effect? We proposed the following hypotheses: (1) Salt and sweetener increased feed intake of livestock and decreased the biomass of plant community, while bitters did the opposite. (2) Taste agents can regulate the relationship between plant species, and different taste agents can enhance or weaken the competitiveness of the different plants. In order to test the hypothesis, a grazing experiment with yaks was conducted in the alpine meadows of the Tibetan Plateau. Denatonium benzoate (Bitterant), NaCl (Salt), and sodium cyclamate (Sweetener) were sprayed onto the meadows twice a year, along with a control treatment of tap water. The results showed that (1) Salt increased the feed intake of yak significantly; bitterant decreased the feed intake of livestock and increased the biomass of plant community. (2) Salt increased the Pielou index of the plant community significantly. (3) The stability of plant community ranking from high to low is as follows: Control > Bitterant > Sweetener > Salt. (4) Bitterant and salt improved grazing tolerance of grassland and salt reduced the edibility of grassland. (5) The use of taste agents reduced the correlation between dominant species and led to the fragmentation of the relationship chain. The results of this study will provide a theoretical basis for using taste agents to regulate the community, species biodiversity management, restoration of degraded grassland, promoting utilization of grassland though controlling livestock selectivity.


Asunto(s)
Pradera , Gusto , Animales , Bovinos , Agentes Aversivos , Suelo/química , Plantas , Ganado , Cloruro de Sodio , Edulcorantes , Tibet
11.
Sci Total Environ ; 912: 169488, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142006

RESUMEN

Herbivore grazing and nitrogen (N) fertilization affect soil microbial diversity and community composition both in direct and indirect pathways (e.g., via alterations in soil microenvironment and plant communities); however, their combination effects are still largely unexplored. We carried out a field study to investigate how soil abiotic properties, plant community composition and functional traits altered soil bacterial community structure and function in response to a long-term herbivore grazing (17-year sheep grazing with four stocking rates) and anthropogenic N inputs (6-year N addition with four levels) experiment. We show that a high stocking rate of 8.7 sheep ha-1 (SR8.7) decreased soil bacterial α- and ß-diversity, while α- and ß-diversity showed hump-shaped and saddle-shaped responses, respectively, with increasing N addition rate, reaching tipping points at the N application rate of 10 g N m-2 year-1 (N10). The synergistic effects of grazing and N addition induced the highest soil bacterial α-diversity at SR2.7 with N10. The contrasting effects of grazing and N addition induced higher soil bacterial ß-diversity at SR8.7 with N20. Plant factors (e.g., aboveground biomass of Stipa bungeana and community-weighted mean carbon [CWM_C]), edaphic factors (e.g., soil moisture, pH, NO3--N, and C:nutrients ratios) and their interactions were the most significant factors affecting the diversity and community composition of bacteria. Our structure equation model (SEM) shows that grazing-induced negative effects on soil pH and plant community composition indirectly increased the ß-diversity of soil bacteria, while grazing-induced decreased CWM_C had positive effects on bacterial α-diversity and community structure. However, N addition indirectly increased ß-diversity of soil bacteria via changes in soil NO3--N and plant community composition, while N addition had negative impacts on bacterial α-diversity and community structure via variations in CWM_C. The interaction of grazing and N addition increased the complexity and stability of the bacterial network. Based on the KEGG database, grazing and N addition could accelerate the soil functional potential of C and N cycling. Our findings suggest that N application at a rate of <10 g N m-2 year-1 with a stocking rate of <5.3 sheep ha-1 could maintain the development of soil bacteria in supporting the most important ecosystem functions and services. Complex responses of soil microbes to grazing and N addition indicate the need for deeper investigations of the impacts of global change on microbial involvement in biogeochemical cycles.


Asunto(s)
Ecosistema , Suelo , Animales , Ovinos , Suelo/química , Microbiología del Suelo , Herbivoria , Plantas/microbiología , Bacterias/metabolismo , Pradera
12.
J Fungi (Basel) ; 9(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888272

RESUMEN

Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on foliar fungal endophyte communities remains largely unexplored. We conducted a long-term (18 yr) grazing experiment to explore the effects of grazing on the community composition and diversity of the foliar fungal endophytes of two perennial grassland species (i.e., Artemisia capillaris and Stipa bungeana) across one growing season. Grazing significantly increased the mean fungal alpha diversity of A. capillaris in the early season. In contrast, grazing significantly reduced the mean fungal alpha diversity of endophytic fungi of S. bungeana in the late season. Grazing, growing season, and their interactions concurrently structured the community composition of the foliar fungal endophytes of both plant species. However, growing season consistently outperformed grazing and environmental factors in shaping the community composition and diversity of both plant species. Overall, our findings demonstrate that the foliar endophytic fungal community diversity and composition differed in response to grazing between A. capillaris and S. bungeana during one growing season. The focus on this difference will enhance our understanding of grazing's impact on ecological systems and improve land management practices in grazing regions. This variation in the effects of leaf nutrients and plant community characteristics on foliar endophytic fungal community diversity and composition may have a pronounced impact on plant health and plant-fungal interactions.

13.
J Environ Manage ; 348: 119184, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832291

RESUMEN

Grazing and climate change both contribute to diversity loss and productivity fluctuations. Sensitive climate conditions and long-term grazing activities have a profound influence on community change, particularly in high-altitude mountain grassland ecosystems. However, knowledge about the role of long-term continuous grazing management on diversity, productivity and the regulation mechanisms in fragile grassland ecosystems is still rudimentary. We conducted a long-term grazing experiment on an alpine typical steppe in the Qilian Mountains to assess effects of grazing intensity on soil, diversity, productivity and the regulation mechanisms. Plants and soil were sampled along grazing gradients at different distances from the pasture entrance (0, 0.3, 0.6, 0.9, 1.2 and 1.5 km) under the non-growing (WP) and the growing season grazing pasture (SAP). The results revealed that community diversity and biomass did not change significantly on a time scale, while the concentration of soil organic carbon and total phosphorus increased significantly. Heavy grazing (0-0.3 km) decreased community diversity and biomass. Grazing increased soil chemical properties in heavy grazed areas of WP, while the opposite was recorded in SAP. Soil chemical properties explained the largest variances in community diversity and community biomass. The prediction model indicates that grazing in WP mainly affects community diversity through soil chemical properties, and promotes a positive correlation between community diversity and community biomass; in SAP, the direct effect of grazing gradients on community diversity and biomass is the main pathway, but not eliminating the single positive relationship between diversity and biomass, which means that diversity can still be used as a potential resource to promote productivity improvement. Therefore, we should focus on the regulation of soil chemical properties in WP, such as the health and quality of soil, strengthening its ability to store water, sequester carbon and increase nutrients; focus on the management of livestock in SAP, including providing fertilizer and sowing to increase diversity and production in heavily grazed regions and reducing grazing pressure through regional rotational grazing. Ultimately, we call for strengthening the stability and sustainability of ecosystems through targeted and active human intervention in ecologically sensitive areas to cope with future grazing pressures and climate disturbances.


Asunto(s)
Ecosistema , Pradera , Humanos , Suelo/química , Carbono , Biomasa
14.
Sci Total Environ ; 905: 167156, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37751835

RESUMEN

Few studies on the effects of human activities and global climate change on temporal stability have considered either grazing or precipitation addition (PA). How community stability responds to the interaction between PA and grazing in a single experiment remains unknown. We studied the impact of grazing and PA on the temporal stability of communities in four years field experiment conducted in a typical steppe, adopting a randomized complete block design with grazing was the main block factor and PA was the split block factor. Grazing and PA had negative impacts on the temporal stability of communities. PA reduced the community stability through decreasing the stability of subordinate and community species richness (SR), whereas grazing reduced the community stability through decreasing the stability of the SR and dominant species. In contrast, grazing and PA maintained community stability through increasing species asynchronism and promoting the decoupling of asynchronism and stability. Our results revealed the different mechanisms of grazing and PA on community stability. Exploring the response characteristics of population dynamics to global climate change and pasture management is key to understanding future climate scenarios and changes in community stability under grazing.


Asunto(s)
Cambio Climático , Pradera , Biomasa , China , Ecosistema , Dinámica Poblacional , Crianza de Animales Domésticos , Humanos , Animales , Actividades Humanas
15.
Animal ; 17(8): 100910, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37544052

RESUMEN

Ligularia virgaurea is the most widely functional native herbage in the alpine meadow pastures of the Qinghai-Tibet Plateau (QTP) and has multiple pharmacological and biological activities. The effect of L. virgaurea as a dietary component on the digestion and metabolism of sheep was evaluated by conducting feeding trials in metabolic cages. Thirty-two Tibetan yearling rams (29 ± 1.56 kg BW) were randomly allotted to four groups included in a completely randomised design with eight animals per treatment. Sheep were fed a basal diet (freshly native pasture) without the addition of L. virgaurea (control) or with the addition of L. virgaurea (100, 200, or 300 mg/kg BW per day) for 45 days. Addition of L. virgaurea to the diet of Tibetan sheep was found to influence the average daily gain (quadratic [Q], P < 0.001), feed conversion ratio (Q, P = 0.002), CH4 emissions (linear [L], P = 0.029), DM (Q, P = 0.012), neutral detergent fibre (Q, P = 0.017), acid detergent fibre (ADF) (Q, P = 0.027), and ether extract (EE) intake (Q, P = 0.026). Apparently, different levels of L. virgaurea affected the digestibility coefficients of DM, ADF, and EE (L, P > 0.05; Q, P < 0.05). The nitrogen (N) intake (Q, P = 0.001), retained nitrogen (Q, P < 0.001), and N utilisation efficiency (L, P > 0.05; Q, P ≤ 0.001) were also affected by the dietary inclusion of L. virgaurea. Effects of L. virgaurea feeding were also witnessed on methane energy (CH4-E) (L, P = 0.029), gross energy (GE) (Q, P = 0.013), digestible energy (DE) (Q, P = 0.015), and metabolisable energy (ME) intake (Q, P = 0.015). Energy utilisation efficiency expressed as a proportion of GE intake (DE/GE intake, ME/GE intake, ME/DE intake, FE/GE intake, and CH4-E/GE intake) manifested quadratic changes (P < 0.05) with the increase in the L. virgaurea supplementation level. The addition of L. virgaurea increased the activity of superoxide dismutase (Q, P = 0.026) and glutathione peroxidase activity (Q, P = 0.039) in the serum. Overall, the greatest improvement of feed digestibility, N retention, energy utilisation, and antioxidant capacity of Tibetan sheep was yielded by the inclusion of 200 mg/kg BW per day of L. virgaurea. Therefore, the addition of an appropriate amount of L. virgaurea to the diet of Tibetan sheep is safe and natural, and may enhance the sustainability of small ruminant production systems in QTP areas.


Asunto(s)
Digestión , Ligularia , Animales , Masculino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Antioxidantes/metabolismo , Detergentes , Dieta/veterinaria , Suplementos Dietéticos , Metabolismo Energético , Nitrógeno/metabolismo , Rumiantes/metabolismo , Ovinos , Tibet
16.
Appl Environ Microbiol ; 89(7): e0064523, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37409977

RESUMEN

Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.


Asunto(s)
Compostaje , Genes Bacterianos , Animales , Humanos , Bovinos , Estiércol/microbiología , Metagenómica , Farmacorresistencia Microbiana/genética , Metales , Antibacterianos/farmacología , Ganado
17.
Sci Total Environ ; 894: 164894, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343880

RESUMEN

Overgrazing and injudicious nitrogen applications have increased emissions of greenhouse gases from grassland ecosystems. To explore the effects and potential mechanisms of grazing, nitrogen application, and their interaction with greenhouse gas (GHG) emissions, field experiments were conducted on the Qinghai-Tibet Plateau for three consecutive years. Alpine meadow plots were subjected to light (8 sheep ha-1) and heavy (16 sheep ha-1) stocking rates, with or without ammonium nitrate (NH4NO3) (90 kg N ha-1 yr-1) treatment to simulate soil nitrogen deposition. During early warm growth season (May-June), peak growth season (July-September), and early cold season (October-November), static-chamber gas chromatography was used to analyze the soil's greenhouse gas emissions (CO2, N2O, and CH4). Results indicated that light stocking rate (LG) led to an increase in cumulative CO2 and N2O emissions, while also promoting CH4 uptake. Conversely, heavy stocking rate (HG) produced contrasting outcomes. Additionally, nitrogen applications significantly increased the short-term CO2 and N2O fluxes peaks. Combined treatment of nitrogen application and light stocking rate (LG + N) resulted in increased CO2 and N2O emissions while decreased CH4 uptake, consequently leading to a significant increase in global warming potential. According to the structural equation model, we discovered that nitrogen application and grazing affected GHG fluxes both directly and indirectly through their impact on the environmental factors. Our findings suggest that in the context of increasing nitrogen deposition in the Qinghai-Tibet Plateau, a moderate increase in stocking rate is more effective than reducing grazing intensity for mitigating global warming potential in alpine meadow.

18.
Front Microbiol ; 14: 1174740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350783

RESUMEN

Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces.

19.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37036172

RESUMEN

Exogenous fibrolytic enzyme (EFE) products in ruminant nutrition may be an important alternative to meet the increased demands for animal products in the future with reduced environmental impacts. This study aimed to evaluate the dose-response of EFE supplementation on the nutrient digestibility, nitrogen and energy utilization, and methane (CH4) emissions of Tan sheep grazed in summer and winter. A total of 20 Tan wether sheep with an initial body weight of 23.17 ±â€…0.24 kg were used in a randomized complete block design and categorized into two groups. Animals fed orally with 1 g of EFE (10,000 U/g) mixed with 30 mL of water using a drencher constituted the EFE group. For experimental accuracy, the control (CON) group was orally administered with 30 mL of normal saline daily before grazing. The following results were obtained: EFE in the diet increased dry matter intake (DMI) (P < 0.05), average daily gain (ADG) (P < 0.05), and digestibility (P < 0.05) compared with CON in summer and winter. DMI increased but ADG and digestibility decreased in winter compared with those in summer. Sheep fed with the EFE diet increased the concentrations of rumen ammonia nitrogen (P < 0.05) and total volatile fatty acids (P > 0.05), but reduced pH (P > 0.05), compared with CON in summer and winter. EFE increased nitrogen (N) intake, digestible N, retained N, and retained N/digestible N (P < 0.05) but reduced fecal N/N intake, urinary N/N intake, and excretion N/N intake in summer and winter (P < 0.05), compared with CON. Retained N/N intake was reduced and excretion N/N intake increased in winter relative to those in summer. In winter, gross energy (GE), manure E/GE, CH4 emissions, CH4/DMI, and CH4/GE increased but digestion energy and metabolic energy decreased compared with those in summer. Sheep fed with the EFE diet had a greater GE intake than those fed with the CON diet (P < 0.05) but had lesser CH4/DMI and CH4E/GE (P < 0.05) than those fed with the CON diet in both summer and winter. In conclusion, EFE supplementation increased DMI, apparent digestibility, and N deposition rate. These effects were beneficial for animal production. The CH4 emission per unit DMI of grazing Tan sheep was lesser and conducive for augmenting the environmental benefits.


Globally, the supply­demand relationship between grassland and livestock is mainly mediated by the optimization of pasture management. The interaction between grassland and livestock is one of the fundamental drivers of grassland occurrence and development. Natural grassland yields and quality are affected by precipitation, heat, and grazing, and their dynamics vary seasonally with distinct peaks and troughs. The use of exogenous fibrolytic enzymes during troughs can improve the growth performance, digestion, and metabolism of grazing sheep. The exogenous fibrolytic enzyme supplement used in this research may aid in improving the health and overall productivity of grazing sheep.


Asunto(s)
Dieta , Digestión , Animales , Masculino , Ovinos , Heces , Dieta/veterinaria , Nutrientes , Nitrógeno/metabolismo , Metano/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis
20.
J Environ Manage ; 339: 117924, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37060693

RESUMEN

Several studies have explored the influence of grazing or precipitation addition (PA), two important components of human activities and global climate change on the structure and function of communities. However, the response of communities to a combination of grazing and PA remains largely unexplored. We investigated the impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot design with grazing as the main-plot factor and PA as the split-plot factor. AGB and SR have response threshold value to PA, which was decreased by grazing for AGB, but increased for SR. This indicates that implementing grazing management strategies is conducive to strengthening the protection of biodiversity in arid and semi-arid grasslands. Grazing promoted the AGB-SR coupling of the community by increasing the SR of medium drought tolerance (MD), low drought tolerance, and grazing tolerant functional groups. Grazing also accelerated the AGB-SR decoupling of the community by changing the AGB of high drought tolerance, MD, high grazing tolerance, and medium grazing tolerance functional groups. PA mediated changes in MD and SR of both drought and grazing tolerant functional groups and AGB of low grazing tolerance promoted the coupling of AGB-SR of the community. The Two-dimension functional groups classification method reflects the changes of AGB and SR in communities more reasonable than the division of single-factor functional groups.


Asunto(s)
Biodiversidad , Pradera , Humanos , Biomasa , Cambio Climático , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA