Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(16): e2311523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193311

RESUMEN

Layered transition-metal (TM) oxide cathodes have attracted growing attention in sodium-ion batteries (SIBs). However, their practical implementation is plagued by Jahn-Teller distortion and irreversible cation migration, leading to severe voltage decay and structure instability. Herein, O3-Na0.898K0.058Ni0.396Fe0.098Mn0.396Ti0.092O2 (KT-NFM) is reported as an ultrastable cathode material via multisite substitution with rigid KO6 pillars and flexible TiO6 octahedra. The K pillars induce contracted TMO2 slabs and their strong Coulombic repulsion to inhibit Ni/Fe migration; and Ti incorporation reinforces the hybridization of Ni(3deg*)-O(2p) to mitigate the undesired O3-O'3 phase transition. These enable the reversible redox of Ni2+↔Ni3 . 20+ and Fe3+↔Fe3.69+ for 138.6 mAh g-1 and ultrastable cycles with >90% capacity retention after 2000 cycles in a pouch cell of KT-NFM||hard carbon. This will provide insights into the design of ultrastable layered cathode materials of sodium-ion batteries and beyond.

2.
Small ; 19(49): e2304187, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37603387

RESUMEN

Layered manganese-based oxides (LMOs) are promising cathode materials for sodium-ion batteries (SIBs) due to their versatile structures. However, the Jahn-Teller effect of Mn3+ induces severe distortion of MnO6 octahedra, and the resultant low symmetry is responsible for the gliding of MnO2 layers and then inferior multiple-phase transitions upon Na+ extraction/insertion. Here, hexagonal P2-Na0.643 Li0.078 Mn0.827 Ti0.095 O2 is synthesized through the incorporation of Li and Ti into the distorted orthorhombic P'2-Na0.67 MnO2 to function as a phase-transition-free oxide cathode. It is revealed that Li in both the transition-metal and Na layers enhances the covalency of Mn-O bonds and allows degeneracy of Mn 3d eg orbitals to favor the formation of hexagonal phase, and the high strength of Ti-O bonds reduces the electrostatic interaction between Na and O for suppressed Na+ /vacancy rearrangements. These collectively lead to a whole-voltage-range solid-solution reaction between 1.8 and 4.3 V with a small volume variation of 1.49%. This rewards its excellent cycling stability (capacity retention of 90% after 500 cycles) and rate capability (89 mAh g-1 at 2000 mA g-1 ).

3.
J Am Chem Soc ; 145(17): 9596-9606, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37058227

RESUMEN

Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na-O-Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g-1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5-4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity-stability trade-off in cathode materials for advanced rechargeable batteries.

4.
J Am Chem Soc ; 145(1): 224-233, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562472

RESUMEN

Two-phase transformation reaction is ubiquitous in solid-state electrochemistry; however, it usually involves inferior structure rearrangement upon extraction and insertion of large-sized Na+, thus leading to severe local strain, cracks, and capacity decay in sodium-ion batteries (SIBs). Here, a homeostatic solid solution reaction is reported in the layered cathode material P'2-Na0.653Ni0.081Mn0.799Ti0.120O2 during sodiation and desodiation. It is induced by the synergistic incorporation of Ni and Ti for the reinforced O(2p)-Mn(3d-eg*) hybridization, which leads to mitigated Jahn-Teller distortion of MnO6 octahedra, contracted transition-metal oxide slabs, and enlarged Na layer spacings. The thermodynamically favorable solid solution pathway rewards the SIBs with excellent cycling stability (87.2% capacity retention after 500 cycles) and rate performance (100.5 mA h g-1 at 2500 mA g-1). The demonstrated reaction pathway will open a new avenue for rational designing of cathode materials for SIBs and beyond.

5.
Nano Lett ; 22(22): 9107-9114, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36317840

RESUMEN

The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to alleviate excessive CO2 levels in the atmosphere and produce value-added feedstocks and fuels. However, the synthesis of high-efficiency and robust electrocatalysts remains a great challenge. This work reports the green preparation of surface-oxygen-rich carbon-nanorod-supported bismuth nanoparticles (SOR Bi@C NPs) for an efficient CO2RR toward formate. The resultant SOR Bi@C NPs catalyst displays a Faradaic efficiency of more than 91% for formate generation over a wide potential range of 440 mV. Ex situ XPS and XANES and in situ Raman spectroscopy demonstrate that the Bi-O/Bi (110) structure in the pristine SOR Bi@C NPs can remain stable during the CO2RR process. DFT calculations reveal that the Bi-O/Bi (110) structure can facilitate the formation of the *OCHO intermediate. This work provides an approach to the development of high-efficiency Bi-based catalysts for the CO2RR and offers a unique insight into the exploration of advanced electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA