Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nucleic Acids Res ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036959

RESUMEN

Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.

2.
Nucleic Acids Res ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989613

RESUMEN

Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.

3.
Nat Commun ; 15(1): 3850, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719864

RESUMEN

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Transporte de Catión , Potasio , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Potasio/metabolismo , Unión Proteica , Sodio/metabolismo
4.
Biophys J ; 123(4): 478-488, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38234090

RESUMEN

Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Benceno , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Antivirales/farmacología
5.
Front Med (Lausanne) ; 10: 1167445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228399

RESUMEN

Background: Successful weaning from mechanical ventilation is important for patients admitted to intensive care units. However, models for predicting real-time weaning outcomes remain inadequate. Therefore, this study aimed to develop a machine-learning model for predicting successful extubation only using time-series ventilator-derived parameters with good accuracy. Methods: Patients with mechanical ventilation admitted to the Yuanlin Christian Hospital in Taiwan between August 2015 and November 2020 were retrospectively included. A dataset with ventilator-derived parameters was obtained before extubation. Recursive feature elimination was applied to select the most important features. Machine-learning models of logistic regression, random forest (RF), and support vector machine were adopted to predict extubation outcomes. In addition, the synthetic minority oversampling technique (SMOTE) was employed to address the data imbalance problem. The area under the receiver operating characteristic (AUC), F1 score, and accuracy, along with the 10-fold cross-validation, were used to evaluate prediction performance. Results: In this study, 233 patients were included, of whom 28 (12.0%) failed extubation. The six ventilatory variables per 180 s dataset had optimal feature importance. RF exhibited better performance than the others, with an AUC value of 0.976 (95% confidence interval [CI], 0.975-0.976), accuracy of 94.0% (95% CI, 93.8-94.3%), and an F1 score of 95.8% (95% CI, 95.7-96.0%). The difference in performance between the RF and the original and SMOTE datasets was small. Conclusion: The RF model demonstrated a good performance in predicting successful extubation in mechanically ventilated patients. This algorithm made a precise real-time extubation outcome prediction for patients at different time points.

6.
J Biol Chem ; 299(7): 104864, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245780

RESUMEN

Secondary structures formed by expanded CUG RNA are involved in the pathobiology of myotonic dystrophy type 1. Understanding the molecular basis of toxic RNA structures can provide insights into the mechanism of disease pathogenesis and accelerate the drug discovery process. Here, we report the crystal structure of CUG repeat RNA containing three U-U mismatches between C-G and G-C base pairs. The CUG RNA crystallizes as an A-form duplex, with the first and third U-U mismatches adopting a water-mediated asymmetric mirror isoform geometry. We found for the first time that a symmetric, water-bridged U-H2O-U mismatch is well tolerated within the CUG RNA duplex, which was previously suspected but not observed. The new water-bridged U-U mismatch resulted in high base-pair opening and single-sided cross-strand stacking interactions, which in turn dominate the CUG RNA structure. Furthermore, we performed molecular dynamics simulations that complemented the structural findings and proposed that the first and third U-U mismatches are interchangeable conformations, while the central water-bridged U-U mismatch represents an intermediate state that modulates the RNA duplex conformation. Collectively, the new structural features provided in this work are important for understanding the recognition of U-U mismatches in CUG repeats by external ligands such as proteins or small molecules.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Agua/química , ARN/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico
8.
Nucleic Acids Res ; 51(8): 3540-3555, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36919604

RESUMEN

Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches.


Asunto(s)
Neoplasias Colorrectales , Equinomicina , Humanos , Animales , Ratones , Dactinomicina/química , Equinomicina/química , Timina , Secuencia de Bases , Sitios de Unión , Conformación de Ácido Nucleico , ADN/química
9.
Bioorg Med Chem ; 76: 117094, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410206

RESUMEN

DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.


Asunto(s)
Nanotecnología , Neoplasias , Humanos , Ligandos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , ADN
11.
Nucleic Acids Res ; 50(15): 8867-8881, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35871296

RESUMEN

The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use.


Asunto(s)
ADN , Emparejamiento Base , ADN/química , ADN/genética , Enlace de Hidrógeno , Estructura Molecular , Conformación de Ácido Nucleico
12.
Front Mol Biosci ; 9: 871499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517857

RESUMEN

Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.

13.
Surg Infect (Larchmt) ; 23(2): 191-198, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35085460

RESUMEN

Background: Thoracic empyema is a disease with high mortality and morbidity. Video-assisted thoracoscopic surgery (VATS) is recommended to treat advanced stage empyema. The purpose of this study was to explore risk factors associated with post-surgery mortality for community-acquired empyema. Patients and Methods: We retrospectively reviewed 440 patients who received VATS for community-acquired empyema, higher than stage 2, in a tertiary medical center in Taiwan. Patients' age, comorbidities, pleural effusion analysis, and post-surgery outcome were compiled. Cox regression model for survival was applied to identify risk factors of 90-day death after surgery. Results: Fifty-three patients (12.05%) had died within 90 days post-surgery. The risk factors of mortality were advanced age (hazard ratio [HR], 1.027; 95% confidence interval [CI], 1.001-1.052), chronic kidney disease (HR, 5.322; 95% CI, 2.635-10.746), cancer (HR, 6.038; 95% CI, 2.737-13.321), pleural effusion pH ≤7 (HR, 2.61; 95% CI, 1.344-5.069), pleural effusion protein ≤4 (HR, 2.021; 95% CI, 1.035-3.947), and late surgery (HR, 3.014; 95% CI, 1.595-5.696). The 90-day mortality in the early surgery group versus the late group was 6.85% versus 26.05%. The increased mortality risk from late surgery was observed in most subgroups, except for patients who were female, had chronic renal disease, and had coronary artery disease. Conclusions: Patients who are elderly, have chronic kidney disease, cancer history, low pleural effusion pH, low pleural effusion protein, and late surgery are associated with post-surgery mortality for community-acquired advanced empyema. Early VATS surgery for advanced empyema or treatment failure of chest tube drainage appears to beneficial and is recommended.


Asunto(s)
Empiema Pleural , Cirugía Torácica Asistida por Video , Anciano , Drenaje/efectos adversos , Empiema Pleural/epidemiología , Empiema Pleural/cirugía , Femenino , Humanos , Estudios Retrospectivos , Factores de Riesgo , Cirugía Torácica Asistida por Video/efectos adversos
14.
J Med Chem ; 64(17): 12469-12486, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459195

RESUMEN

Designing hybrid molecules with dual functions is one approach to improve the therapeutic efficacy of combination treatment. We have previously conjugated phthalazine and bis(hydroxymethyl)pyrrole pharmacophores to form hybrids bearing antiangiogenesis and DNA interstrand cross-linking activities. To improve the bioavailability, we adopted a benzology approach to design and synthesize a new series of 1,2-bis(hydroxymethyl)benzo[g]pyrrolo[2,1-a]phthalazines. These new hybrids retained the dual functions and could be formulated into vehicles for intravenous and oral administration. Among them, we demonstrated that compound 19a with dimethylamine at the C6 position markedly suppressed the tumor growth of human small cell lung cancer cell line H526, squamous lung cancer cell line H520, and renal cancer cell line 786-O in nude mice, implying that compound 19a is a broad-spectrum anticancer agent. Our results implicated that the conjugation of antiangiogenic and DNA cross-linking is likely to be a helpful approach to improving the efficacy of combination therapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Neovascularización Patológica/prevención & control , Ftalazinas/química , Ftalazinas/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular , Diseño de Fármacos , Humanos , Neoplasias Pulmonares , Ratones , Ratones Desnudos , Neoplasias de Células Escamosas , Carcinoma Pulmonar de Células Pequeñas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Comput Struct Biotechnol J ; 19: 2246-2255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936565

RESUMEN

To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chemical space by providing alternative targets for drug discovery. In this review, we will provide a comprehensive overview of the theory, methods and applications of PPII-targeted drug development towards COVID-19 based on recent literature. We will also highlight novel developments, such as the successful use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discovery and speed up drug development against the pandemic.

16.
Nucleic Acids Res ; 49(16): 9526-9538, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-33836081

RESUMEN

The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteína C9orf72/genética , ADN de Forma A/ultraestructura , Demencia Frontotemporal/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Antracenos/química , Antracenos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , ADN/efectos de los fármacos , ADN/ultraestructura , ADN de Forma A/efectos de los fármacos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Conformación de Ácido Nucleico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
17.
J Am Chem Soc ; 142(25): 11165-11172, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32478511

RESUMEN

The potent DNA-binding compound triaminotriazine-acridine conjugate (Z1) functions by targeting T:T mismatches in CTG trinucleotide repeats that are responsible for causing neurological diseases such as myotonic dystrophy type 1, but its binding mechanism remains unclear. We solved a crystal structure of Z1 in a complex with DNA containing three consecutive CTG repeats with three T:T mismatches. Crystallographic studies revealed that direct intercalation of two Z1 molecules at both ends of the CTG repeat induces thymine base flipping and DNA backbone deformation to form a four-way junction. The core of the complex unexpectedly adopts a U-shaped head-to-head topology to form a crossover of each chain at the junction site. The crossover junction is held together by two stacked G:C pairs at the central core that rotate with respect to each other in an X-shape to form two nonplanar minor-groove-aligned G·C·G·C tetrads. Two stacked G:C pairs on both sides of the center core are involved in the formation of pseudo-continuous duplex DNA. Four metal-mediated base pairs are observed between the N7 atoms of G and CoII, an interaction that strongly preserves the central junction site. Beyond revealing a new type of ligand-induced, four-way junction, these observations enhance our understanding of the specific supramolecular chemistry of Z1 that is essential for the formation of a noncanonical DNA superstructure. The structural features described here serve as a foundation for the design of new sequence-specific ligands targeting mismatches in the repeat-associated structures.


Asunto(s)
Acridinas/química , ADN/química , Sustancias Intercalantes/química , Triazinas/química , Disparidad de Par Base , Emparejamiento Base , ADN/genética , Conformación de Ácido Nucleico , Timina/química , Repeticiones de Trinucleótidos
18.
J Med Chem ; 63(6): 3131-3141, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32105468

RESUMEN

Structure-based stabilization of protein-protein interactions (PPIs) is a promising strategy for drug discovery. However, this approach has mainly focused on the stabilization of native PPIs, and non-native PPIs have received little consideration. Here, we identified a non-native interaction interface on the three-dimensional dimeric structure of the N-terminal domain of the MERS-CoV nucleocapsid protein (MERS-CoV N-NTD). The interface formed a conserved hydrophobic cavity suitable for targeted drug screening. By considering the hydrophobic complementarity during the virtual screening step, we identified 5-benzyloxygramine as a new N protein PPI orthosteric stabilizer that exhibits both antiviral and N-NTD protein-stabilizing activities. X-ray crystallography and small-angle X-ray scattering showed that 5-benzyloxygramine stabilizes the N-NTD dimers through simultaneous hydrophobic interactions with both partners, resulting in abnormal N protein oligomerization that was further confirmed in the cell. This unique approach based on the identification and stabilization of non-native PPIs of N protein could be applied toward drug discovery against CoV diseases.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Indoles/farmacología , Proteínas de la Nucleocápside/metabolismo , Multimerización de Proteína/efectos de los fármacos , Alcaloides/química , Alcaloides/metabolismo , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/metabolismo , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus , Cristalografía por Rayos X , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/química , Indoles/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/química , Unión Proteica , Dominios Proteicos , Alineación de Secuencia , Células Vero
19.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615004

RESUMEN

Plant pathogens secrete proteins called effectors into the cells of their host to modulate the host immune response against colonization. Effectors can either modify or arrest host target proteins to sabotage the signaling pathway, and therefore are considered potential drug targets for crop disease control. In earlier research, the Xanthomonas type III effector XopAI was predicted to be a member of the arginine-specific mono-ADP-ribosyltransferase family. However, the crystal structure of XopAI revealed an altered active site that is unsuitable to bind the cofactor NAD+, but with the capability to capture an arginine-containing peptide from XopAI itself. The arginine peptide consists of residues 60 through 69 of XopAI, and residue 62 (R62) is key to determining the protein-peptide interaction. The crystal structure and the molecular dynamics simulation results indicate that specific arginine recognition is mediated by hydrogen bonds provided by the backbone oxygen atoms from residues W154, T155, and T156, and a salt bridge provided by the E265 sidechain. In addition, a protruding loop of XopAI adopts dynamic conformations in response to arginine peptide binding and is probably involved in target protein recognition. These data suggest that XopAI binds to its target protein by the peptide-binding ability, and therefore, it promotes disease progression. Our findings reveal an unexpected and intriguing function of XopAI and pave the way for further investigation on the role of XopAI in pathogen invasion.


Asunto(s)
ADP Ribosa Transferasas/química , Arginina/química , Péptidos/química , Xanthomonas/química , ADP Ribosa Transferasas/genética , Secuencia de Aminoácidos/genética , Arginina/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Oxígeno/química , Péptidos/genética , Plantas/genética , Plantas/microbiología , Unión Proteica , Conformación Proteica , Transducción de Señal/genética , Xanthomonas/enzimología , Xanthomonas/patogenicidad
20.
Nucleic Acids Res ; 47(16): 8899-8912, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31361900

RESUMEN

DNA mismatches are highly polymorphic and dynamic in nature, albeit poorly characterized structurally. We utilized the antitumour antibiotic CoII(Chro)2 (Chro = chromomycin A3) to stabilize the palindromic duplex d(TTGGCGAA) DNA with two G:G mismatches, allowing X-ray crystallography-based monitoring of mismatch polymorphism. For the first time, the unusual geometry of several G:G mismatches including syn-syn, water mediated anti-syn and syn-syn-like conformations can be simultaneously observed in the crystal structure. The G:G mismatch sites of the d(TTGGCGAA) duplex can also act as a hotspot for the formation of alternative DNA structures with a GC/GA-5' intercalation site for binding by the GC-selective intercalator actinomycin D (ActiD). Direct intercalation of two ActiD molecules to G:G mismatch sites causes DNA rearrangements, resulting in backbone distortion to form right-handed Z-DNA structures with a single-step sharp kink. Our study provides insights on intercalators-mismatch DNA interactions and a rationale for mismatch interrogation and detection via DNA intercalation.


Asunto(s)
Antibióticos Antineoplásicos/química , Cromomicina A3/química , ADN de Forma Z/química , Dactinomicina/química , Sustancias Intercalantes/química , Oligodesoxirribonucleótidos/química , Antibióticos Antineoplásicos/metabolismo , Disparidad de Par Base , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cromomicina A3/metabolismo , Cristalización , Cristalografía por Rayos X , ADN de Forma Z/metabolismo , Dactinomicina/metabolismo , Humanos , Sustancias Intercalantes/metabolismo , Modelos Moleculares , Oligodesoxirribonucleótidos/síntesis química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA