Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Biol ; 225(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417012

RESUMEN

European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted OW conditions in F1 (temperature: 15-18°C and 20-23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate. We found that in F1, OA as a single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rate, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rate were significantly lower in cold compared with warm conditioned fish and also lower in F0 compared with F1 fish. We did not find any effect of OA as a single stressor on metabolic rate. Juvenile PO2,crit was not affected by OA or OAW in both generations. We discuss the potential underlying mechanisms resulting in the resilience of F0 and F1 larvae and juveniles to OA and in the beneficial effects of OW on F1 larval growth and metabolic rate, but contrastingly in the vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.


Asunto(s)
Lubina , Animales , Lubina/metabolismo , Concentración de Iones de Hidrógeno , Larva , Océanos y Mares , Agua de Mar , Temperatura
2.
Sci Rep ; 10(1): 2338, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047178

RESUMEN

When organisms are unable to feed ad libitum they may be more susceptible to negative effects of environmental stressors such as ocean acidification and warming (OAW). We reared sea bass (Dicentrarchus labrax) at 15 or 20 °C and at ambient or high PCO2 (650 versus 1750 µatm PCO2; pH = 8.1 or 7.6) at ad libitum feeding and observed no discernible effect of PCO2 on the size-at-age of juveniles after 277 (20 °C) and 367 (15 °C) days. Feeding trials were then conducted including a restricted ration (25% ad libitum). At 15 °C, growth rate increased with ration but was unaffected by PCO2. At 20 °C, acidification and warming acted antagonistically and low feeding level enhanced PCO2 effects. Differences in growth were not merely a consequence of lower food intake but also linked to changes in digestive efficiency. The specific activity of digestive enzymes (amylase, trypsin, phosphatase alkaline and aminopeptidase N) at 20 °C was lower at the higher PCO2 level. Our study highlights the importance of incorporating restricted feeding into experimental designs examining OAW and suggests that ad libitum feeding used in the majority of the studies to date may not have been suitable to detect impacts of ecological significance.


Asunto(s)
Ácidos/análisis , Alimentación Animal/análisis , Lubina/crecimiento & desarrollo , Abastecimiento de Alimentos/estadística & datos numéricos , Agua de Mar/análisis , Temperatura , Animales , Cambio Climático , Homeostasis , Concentración de Iones de Hidrógeno , Océanos y Mares
3.
J Exp Biol ; 222(Pt 21)2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31624098

RESUMEN

The world's oceans are acidifying and warming as a result of increasing atmospheric CO2 concentrations. The thermal tolerance of fish greatly depends on the cardiovascular ability to supply the tissues with oxygen. The highly oxygen-dependent heart mitochondria thus might play a key role in shaping an organism's tolerance to temperature. The present study aimed to investigate the effects of acute and chronic warming on the respiratory capacity of European sea bass (Dicentrarchus labrax L.) heart mitochondria. We hypothesized that acute warming would impair mitochondrial respiratory capacity, but be compensated for by life-time conditioning. Increasing PCO2  may additionally cause shifts in metabolic pathways by inhibiting several enzymes of the cellular energy metabolism. Among other shifts in metabolic pathways, acute warming of heart mitochondria of cold life-conditioned fish increased leak respiration rate, suggesting a lower aerobic capacity to synthesize ATP with acute warming. However, thermal conditioning increased mitochondrial functionality, e.g. higher respiratory control ratios in heart mitochondria of warm life-conditioned compared with cold life-conditioned fish. Exposure to high PCO2  synergistically amplified the effects of acute and long-term warming, but did not result in changes by itself. This high ability to maintain mitochondrial function under ocean acidification can be explained by the fact that seabass are generally able to acclimate to a variety of environmental conditions. Improved mitochondrial energy metabolism after warm conditioning could be due to the origin of this species in the warm waters of the Mediterranean. Our results also indicate that seabass are not yet fully adapted to the colder temperatures in their northern distribution range and might benefit from warmer temperatures in these latitudes.


Asunto(s)
Lubina/fisiología , Dióxido de Carbono/análisis , Calentamiento Global , Agua de Mar/química , Animales , Concentración de Iones de Hidrógeno , Océanos y Mares , Dinámica Poblacional
4.
PLoS One ; 14(9): e0221283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490944

RESUMEN

Ocean acidification and ocean warming (OAW) are simultaneously occurring and could pose ecological challenges to marine life, particularly early life stages of fish that, although they are internal calcifiers, may have poorly developed acid-base regulation. This study assessed the effect of projected OAW on key fitness traits (growth, development and swimming ability) in European sea bass (Dicentrarchus labrax) larvae and juveniles. Starting at 2 days post-hatch (dph), larvae were exposed to one of three levels of PCO2 (650, 1150, 1700 µatm; pH 8.0, 7.8, 7.6) at either a cold (15°C) or warm (20°C) temperature. Growth rate, development stage and critical swimming speed (Ucrit) were repeatedly measured as sea bass grew from 0.6 to ~10.0 (cold) or ~14.0 (warm) cm body length. Exposure to different levels of PCO2 had no significant effect on growth, development or Ucrit of larvae and juveniles. At the warmer temperature, larvae displayed faster growth and deeper bodies. Notochord flexion occurred at 0.8 and 1.2 cm and metamorphosis was completed at an age of ~45 and ~60 days post-hatch for sea bass in the warm and cold treatments, respectively. Swimming performance increased rapidly with larval development but better swimmers were observed in the cold treatment, reflecting a potential trade-off between fast grow and swimming ability. A comparison of the results of this and other studies on marine fish indicates that the effects of OAW on the growth, development and swimming ability of early life stages are species-specific and that generalizing the impacts of climate-driven warming or ocean acidification is not warranted.


Asunto(s)
Lubina/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Agua de Mar/química , Natación , Temperatura , Animales , Lubina/fisiología , Concentración de Iones de Hidrógeno , Larva/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA