Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37546802

RESUMEN

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.

2.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574664

RESUMEN

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Repeticiones WD40 , Animales , Humanos , Ratones , Cromatina , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Animales , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
3.
NAR Cancer ; 4(1): zcac007, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35252869

RESUMEN

Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.

4.
Sci Rep ; 12(1): 1848, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115608

RESUMEN

WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Linfoma de Células B/tratamiento farmacológico , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Metilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Transducción de Señal , Transcripción Genética
5.
Nucleic Acids Res ; 48(6): 2924-2941, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31996893

RESUMEN

WDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control. Here, we have performed comparative genomic analyses to identify the conserved sites of WDR5 binding to chromatin, and the conserved genes regulated by WDR5, across a diverse panel of cancer cell lines. We show that a specific cohort of protein synthesis genes (PSGs) are invariantly bound by WDR5, demonstrate that the WIN site anchors WDR5 to chromatin at these sites, and establish that PSGs are bona fide, acute, and persistent targets of WIN site blockade. Together, these data reveal that WDR5 plays a predominant transcriptional role in biomass accumulation and provide further evidence that WIN site inhibitors act to repress gene networks linked to protein synthesis homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Biosíntesis de Proteínas/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Cromatina/metabolismo , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Unión Proteica , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Nat Commun ; 10(1): 2014, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043611

RESUMEN

SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.


Asunto(s)
Genes Supresores de Tumor , Proteínas Proto-Oncogénicas c-myc/genética , Tumor Rabdoide/genética , Proteína SMARCB1/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/genética
7.
Cell Rep ; 26(11): 2916-2928.e13, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865883

RESUMEN

The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.


Asunto(s)
Cromatina/metabolismo , Inhibidores Enzimáticos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sitios de Unión , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Masculino , Unión Proteica/efectos de los fármacos
8.
Mol Biol Cell ; 27(17): 2735-41, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385344

RESUMEN

The ubiquitin-proteasome system (UPS) influences gene transcription in multiple ways. One way in which the UPS affects transcription centers on transcriptional activators, the function of which can be stimulated by components of the UPS that also trigger their destruction. Activation of transcription by the yeast activator Gcn4, for example, is attenuated by mutations in the ubiquitin ligase that mediates Gcn4 ubiquitylation or by inhibition of the proteasome, leading to the idea that ubiquitin-mediated proteolysis of Gcn4 is required for its activity. Here we probe the steps in Gcn4 activity that are perturbed by disruption of the UPS. We show that the ubiquitylation machinery and the proteasome control different steps in Gcn4 function and that proteasome activity is required for the ability of Gcn4 to bind to its target genes in the context of chromatin. Curiously, the effect of proteasome inhibition on Gcn4 activity is suppressed by mutations in the ubiquitin-selective chaperone Cdc48, revealing that proteolysis per se is not required for Gcn4 activity. Our data highlight the role of Cdc48 in controlling promoter occupancy by Gcn4 and support a model in which ubiquitylation of activators-not their destruction-is important for function.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina
9.
Mol Cell ; 58(3): 440-52, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25818646

RESUMEN

MYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5. MYC binds WDR5 via an evolutionarily conserved "MYC box IIIb" motif that engages a shallow, hydrophobic cleft on the surface of WDR5. Structure-guided mutations in MYC that disrupt interaction with WDR5 attenuate binding of MYC at ∼80% of its chromosomal locations and disable its ability to promote induced pluripotent stem cell formation and drive tumorigenesis. Our data reveal WDR5 as a key determinant for MYC recruitment to chromatin and uncover a tractable target for the discovery of anticancer therapies against MYC-driven tumors.


Asunto(s)
Carcinogénesis/metabolismo , Cromatina/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anisotropía , Sitios de Unión/genética , Carcinogénesis/genética , Cromatina/química , Cromatina/genética , Polarización de Fluorescencia , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
10.
Nucleic Acids Res ; 42(17): 10975-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25183520

RESUMEN

Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Ubiquitinación , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Células Cultivadas , Femenino , Humanos , Masculino , Mutación , Mioblastos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA