RESUMEN
Introduction: This study aimed to establish efficient, cost-effective, and early predictive models for adverse pregnancy outcomes based on the combinations of a minimum number of miRNA biomarkers, whose altered expression was observed in specific pregnancy-related complications and selected maternal clinical characteristics. Methods: This retrospective study included singleton pregnancies with gestational hypertension (GH, n = 83), preeclampsia (PE, n = 66), HELLP syndrome (n = 14), fetal growth restriction (FGR, n = 82), small for gestational age (SGA, n = 37), gestational diabetes mellitus (GDM, n = 121), preterm birth in the absence of other complications (n = 106), late miscarriage (n = 34), stillbirth (n = 24), and 80 normal term pregnancies. MiRNA gene expression profiling was performed on the whole peripheral venous blood samples collected between 10 and 13 weeks of gestation using real-time reverse transcription polymerase chain reaction (RT-PCR). Results: Most pregnancies with adverse outcomes were identified using the proposed approach (the combinations of selected miRNAs and appropriate maternal clinical characteristics) (GH, 69.88%; PE, 83.33%; HELLP, 92.86%; FGR, 73.17%; SGA, 81.08%; GDM on therapy, 89.47%; and late miscarriage, 84.85%). In the case of stillbirth, no addition of maternal clinical characteristics to the predictive model was necessary because a high detection rate was achieved by a combination of miRNA biomarkers only [91.67% cases at 10.0% false positive rate (FPR)]. Conclusion: The proposed models based on the combinations of selected cardiovascular disease-associated miRNAs and maternal clinical variables have a high predictive potential for identifying women at increased risk of adverse pregnancy outcomes; this can be incorporated into routine first-trimester screening programs. Preventive programs can be initiated based on these models to lower cardiovascular risk and prevent the development of metabolic/cardiovascular/cerebrovascular diseases because timely implementation of beneficial lifestyle strategies may reverse the dysregulation of miRNAs maintaining and controlling the cardiovascular system.
RESUMEN
AIM AND METHODOLOGY: To provide a comprehensive review on new findings and current recommendations regarding antiphospholipid antibodies with particular emphasis on clinical impact on gestation. CONCLUSION: Antiphospholipid antibodies are an important risk factor for the development of a series of pregnancy-related complications. Early diagnosis and appropriate therapy can reduce the incidence of pregnancy loss and pregnancy-related complications.
Asunto(s)
Anticuerpos Antifosfolípidos , Síndrome Antifosfolípido , Complicaciones del Embarazo , Humanos , Embarazo , Femenino , Anticuerpos Antifosfolípidos/sangre , Anticuerpos Antifosfolípidos/inmunología , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/diagnóstico , Síndrome Antifosfolípido/complicaciones , Complicaciones del Embarazo/inmunologíaRESUMEN
This Special Issue mainly focuses on preeclampsia (PE), haemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome, gestational diabetes mellitus (GDM), foetal growth restriction (FGR), small-for-gestational-age foetuses (SGA), miscarriage, stillbirth, first-episode psychosis (FEP) during pregnancy, and pregnancy-related acute kidney injury (PR-AKI) [...].
Asunto(s)
Diabetes Gestacional , Preeclampsia , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Mortinato , Retardo del Crecimiento FetalRESUMEN
We established efficient first trimester prediction models for small-for-gestational age (SGA) and fetal growth restriction (FGR) without the presence of preeclampsia (PE) regardless of the gestational age of the onset of the disease [early FGR occurring before 32 gestational week or late FGR occurring after 32 gestational week]. The retrospective study was performed on singleton Caucasian pregnancies (n = 6440) during the period 11/2012-3/2020. Finally, 4469 out of 6440 pregnancies had complete medical records since they delivered in the Institute for the Care of Mother and Child, Prague, Czech Republic. The study included all cases diagnosed with SGA (n = 37) or FGR (n = 82) without PE, and 80 selected normal pregnancies. Four microRNAs (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) identified 75.68 % SGA cases at 10.0 % false positive rate (FPR). Eight microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-126-3p, miR-130b-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) identified 83.80 % SGA cases at 10.0 % FPR. The prediction model for SGA based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by assisted reproductive technology (ART), first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm]. Then 81.08 % and 89.19 % pregnancies developing SGA were identified at 10.0 % FPR in case of utilization of 4 microRNA and 8 microRNA biomarkers. Simplified prediction model for SGA based on limited number of maternal clinical characteristics (maternal age and BMI, an infertility treatment by ART, and 4 microRNAs) does not improve the detection rate of SGA (70.27 % SGA cases at 10.0 % FPR) when compared with prediction model for SGA based just on the expression profile of 4 or 8 microRNAs biomarkers. Seven microRNAs only (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) identified 42.68 % FGR cases at 10.0 % FPR (AUC 0.725). However, the combination of 10 microRNAs only (miR-16-5p, miR-20a-5p, miR-100-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-342-3p, and miR-574-3p) reached a higher discrimination power (AUC 0.774). It identified 40.24 % FGR cases at 10.0 % FPR. The prediction model for any subtype of FGR based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by ART, the parity (nulliparity), the occurrence of SGA or FGR in previous gestation, and the occurrence of any autoimmune disorder, and the presence of chronic hypertension]. Then 64.63 % and 65.85 % pregnancies destinated to develop FGR were identified at 10.0 % FPR in case of utilization of 7 microRNA biomarkers or 10 microRNA biomarkers. When other clinical variables next to those ones mentioned above such as first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm, were added to the prediction model for FGR, the detection power was even increased to 74.39 % cases and 78.05 % cases at 10.0 % FPR.
Asunto(s)
Infertilidad , MicroARNs , Preeclampsia , Embarazo , Niño , Femenino , Recién Nacido , Humanos , Lactante , Preeclampsia/genética , Primer Trimestre del Embarazo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/diagnóstico , Estudios Retrospectivos , Edad Gestacional , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Feto/metabolismoRESUMEN
We evaluated the potential of cardiovascular-disease-associated microRNAs to predict in the early stages of gestation (from 10 to 13 gestational weeks) the occurrence of a miscarriage or stillbirth. The gene expressions of 29 microRNAs were studied retrospectively in peripheral venous blood samples derived from singleton Caucasian pregnancies diagnosed with miscarriage (n = 77 cases; early onset, n = 43 cases; late onset, n = 34 cases) or stillbirth (n = 24 cases; early onset, n = 13 cases; late onset, n = 8 cases; term onset, n = 3 cases) and 80 selected gestational-age-matched controls (normal term pregnancies) using real-time RT-PCR. Altered expressions of nine microRNAs (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-342-3p, and miR-574-3p) were observed in pregnancies with the occurrence of a miscarriage or stillbirth. The screening based on the combination of these nine microRNA biomarkers revealed 99.01% cases at a 10.0% false positive rate (FPR). The predictive model for miscarriage only was based on the altered gene expressions of eight microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p and miR-195-5p). It was able to identify 80.52% cases at a 10.0% FPR. Highly efficient early identification of later occurrences of stillbirth was achieved via the combination of eleven microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-145-5p, miR-210-3p, miR-342-3p, and miR-574-3p) or, alternatively, by the combination of just two upregulated microRNA biomarkers (miR-1-3p and miR-181a-5p). The predictive power achieved 95.83% cases at a 10.0% FPR and, alternatively, 91.67% cases at a 10.0% FPR. The models based on the combination of selected cardiovascular-disease-associated microRNAs had very high predictive potential for miscarriages or stillbirths and may be implemented in routine first-trimester screening programs.
Asunto(s)
Aborto Espontáneo , Enfermedades Cardiovasculares , MicroARNs , Embarazo , Femenino , Humanos , Aborto Espontáneo/genética , Primer Trimestre del Embarazo , Mortinato , Estudios Retrospectivos , MicroARNs/metabolismo , Enfermedades Cardiovasculares/genética , BiomarcadoresRESUMEN
We evaluated the potential of cardiovascular-disease-associated microRNAs for early prediction of HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Gene expression profiling of 29 microRNAs was performed on whole peripheral venous blood samples collected between 10 and 13 weeks of gestation using real-time RT-PCR. The retrospective study involved singleton pregnancies of Caucasian descent only diagnosed with HELLP syndrome (n = 14) and 80 normal-term pregnancies. Upregulation of six microRNAs (miR-1-3p, miR-17-5p, miR-143-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) was observed in pregnancies destined to develop HELLP syndrome. The combination of all six microRNAs showed a relatively high accuracy for the early identification of pregnancies destined to develop HELLP syndrome (AUC 0.903, p < 0.001, 78.57% sensitivity, 93.75% specificity, cut-off > 0.1622). It revealed 78.57% of HELLP pregnancies at a 10.0% false-positive rate (FPR). The predictive model for HELLP syndrome based on whole peripheral venous blood microRNA biomarkers was further extended to maternal clinical characteristics, most of which were identified as risk factors for the development of HELLP syndrome (maternal age and BMI values at early stages of gestation, the presence of any kind of autoimmune disease, the necessity to undergo an infertility treatment by assisted reproductive technology, a history of HELLP syndrome and/or pre-eclampsia in a previous gestation, and the presence of trombophilic gene mutations). Then, 85.71% of cases were identified at a 10.0% FPR. When another clinical variable (the positivity of the first-trimester screening for pre-eclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm) was implemented in the HELLP prediction model, the predictive power was increased further to 92.86% at a 10.0% FPR. The model based on the combination of selected cardiovascular-disease-associated microRNAs and maternal clinical characteristics has a very high predictive potential for HELLP syndrome and may be implemented in routine first-trimester screening programs.
Asunto(s)
Enfermedades Cardiovasculares , Síndrome HELLP , MicroARNs , Preeclampsia , Embarazo , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Primer Trimestre del Embarazo , Preeclampsia/diagnóstico , Preeclampsia/genética , Síndrome HELLP/diagnóstico , Síndrome HELLP/genética , Estudios Retrospectivos , Enfermedades Cardiovasculares/genética , BiomarcadoresRESUMEN
In this special edition (closed on 31 October 2022), 4 reviews, 13 original papers, 1 communication, and 1 case report are published [...].
Asunto(s)
Comunicación , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Complicaciones del Embarazo/etiologíaRESUMEN
The goal of the study was to establish an efficient first-trimester predictive model for any type of preterm birth before 37 gestational weeks (spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM)) in the absence of other pregnancy-related complications, such as gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age. The retrospective study was performed in the period from 11/2012 to 3/2020. Peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group with 80 singleton term pregnancies was selected on the basis of equal sample-storage time. A combination of only six microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p; AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut-off > 0.652) could predict preterm delivery before 37 gestational weeks in early stages of gestation in 52.83% of pregnancies with a 10.0% FPR. This predictive model for preterm birth based on aberrant microRNA expression profile was further improved via implementation of maternal clinical characteristics (maternal age and BMI at early stages of gestation, infertility treatment with assisted reproductive technology, occurrence of preterm delivery before 37 gestational weeks in previous pregnancy(ies), and presence of any kind of autoimmune disease (rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, type 1 diabetes mellitus, or other autoimmune disease)). With this model, 69.81% of pregnancies destined to deliver before 37 gestational weeks were identified with a 10.0% FPR at early stages of gestation. When other clinical variables as well as those mentioned abovesuch as positive first-trimester screening for early preeclampsia with onset before 34 gestational weeks and/or fetal growth restriction with onset before 37 gestational weeks using the Fetal Medicine Foundation algorithm, as well as positive first-trimester screening for spontaneous preterm birth with onset before 34 gestational weeks using the Fetal Medicine Foundation algorithmwere added to the predictive model for preterm birth, the predictive power was even slightly increased to 71.70% with a 10.0% FPR. Nevertheless, we prefer to keep the first-trimester screening for any type of preterm birth occurring before 37 gestational weeks in the absence of other pregnancy-related complications as simple as possible.
RESUMEN
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Gestacional , MicroARNs , Complicaciones del Embarazo , Biomarcadores , Enfermedades Cardiovasculares/genética , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Femenino , Humanos , MicroARNs/metabolismo , Embarazo , Complicaciones del Embarazo/genética , Primer Trimestre del Embarazo , Estudios RetrospectivosRESUMEN
The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p < 0.001, 74.53% sensitivity, 75.00% specificity, cut off > 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut off > 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery.
Asunto(s)
Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , MicroARNs , Complicaciones del Embarazo , Nacimiento Prematuro , Biomarcadores , Enfermedades Cardiovasculares/genética , Trastornos Cerebrovasculares/diagnóstico , Femenino , Retardo del Crecimiento Fetal/genética , Rotura Prematura de Membranas Fetales , Humanos , Recién Nacido , MicroARNs/metabolismo , Embarazo , Complicaciones del Embarazo/genética , Primer Trimestre del Embarazo , Nacimiento Prematuro/genética , Estudios RetrospectivosRESUMEN
The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case-control retrospective study, nested in a cohort, involved all pregnancies diagnosed with SGA (n = 37) or FGR (n = 82) without PE and 80 appropriate-for-gestational age (AGA) pregnancies selected with regard to equality of sample storage time. Gene expression of 29 cardiovascular disease-associated microRNAs was assessed using real-time RT-PCR. Upregulation of miR-16-5p, miR-20a-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, and miR-195-5p was observed in SGA or FGR pregnancies at 10.0% false positive rate (FPR). Upregulation of miR-1-3p, miR-20b-5p, miR-126-3p, miR-130b-3p, and miR-499a-5p was observed in SGA pregnancies only at 10.0% FPR. Upregulation of miR-145-5p, miR-342-3p, and miR-574-3p was detected in FGR pregnancies at 10.0% FPR. The combination of four microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) was able to identify 75.68% SGA pregnancies at 10.0% FPR in early stages of gestation. The detection rate of SGA pregnancies without PE increased 4.67-fold (75.68% vs. 16.22%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. The combination of seven microRNA biomarkers (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) was able to identify 42.68% FGR pregnancies at 10.0% FPR in early stages of gestation. The detection rate of FGR pregnancies without PE increased 1.52-fold (42.68% vs. 28.05%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. Cardiovascular disease-associated microRNAs represent promising early biomarkers with very suitable predictive potential for SGA or FGR without PE to be implemented into the routine screening programs.
RESUMEN
These Special Issue IJMS were dedicated to the major complications responsible for maternal and perinatal morbidity and mortality, such as gestational hypertension (GH), preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), preterm birth, and chronic venous disease [...].
Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Nacimiento Prematuro , Femenino , Retardo del Crecimiento Fetal/etiología , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/etiología , Recién Nacido , Preeclampsia/etiología , EmbarazoRESUMEN
The aim of the study was to assess if cardiovascular disease-associated microRNAs would be able to predict during the early stages of gestation (within 10 to 13 weeks) subsequent onset of hypertensive pregnancy-related complications: gestational hypertension (GH) or preeclampsia (PE). Secondly, the goal of the study was to assess if cardiovascular disease-associated microRNAs would be able to detect the presence of chronic hypertension in early pregnancies. The retrospective study was performed on whole peripheral blood samples collected from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case control study, nested in a cohort, involved all women with chronic hypertension (n = 29), all normotensive women that later developed GH (n = 83) or PE with or without fetal growth restriction (FGR) (n = 66), and 80 controls selected on the base of equal sample storage time. Whole peripheral blood profiling was performed with the selection of 29 cardiovascular disease-associated microRNAs using real-time RT-PCR. Upregulation of miR-1-3p (51.72% at 10.0% FPR) was observed in patients with chronic hypertension only. Upregulation of miR-20a-5p (44.83% and 33.33% at 10.0% FPR) and miR-146a-5p (65.52% and 42.42% at 10.0% FPR) was observed in patients with chronic hypertension and normotensive women with later occurrence of PE. Upregulation of miR-181a-5p was detected in normotensive women subsequently developing GH (22.89% at 10.0% FPR) or PE (40.91% at 10.0% FPR). In a part of women with subsequent onset of PE, upregulation of miR-143-3p (24.24% at 10.0% FPR), miR-145-5p (21.21% at 10.0% FPR), and miR-574-3p (27.27% at 10.0% FPR) was also present. The combination of microRNA biomarkers (miR-20a-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, and miR-574-3p) can predict the later occurrence of PE in 48.48% of pregnancies at 10.0% FPR in early stages of gestation. The combination of upregulated microRNA biomarkers (miR-1-3p, miR-20a-5p, and miR-146a-5p) is able to identify 72.41% of pregnancies with chronic hypertension at 10.0% FPR in early stages of gestation. Cardiovascular disease-associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current first trimester screening program to predict later occurrence of PE with or without FGR. The comparison of the predictive results of the routine first trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation and the first trimester screening for PE wo/w FGR using a panel of six cardiovascular disease-associated microRNAs only revealed that the detection rate of PE increased 1.45-fold (48.48% vs. 33.33%).
RESUMEN
(1) Background: Preterm-born children have an increased cardiovascular risk with the first clinical manifestation during childhood and/or adolescence. (2) Methods: The occurrence of overweight/obesity, prehypertension/hypertension, valve problems or heart defects, and postnatal microRNA expression profiles were examined in preterm-born children at the age of 3 to 11 years descending from preterm prelabor rupture of membranes (PPROM) and spontaneous preterm birth (PTB) pregnancies. The whole peripheral blood gene expression of 29 selected microRNAs associated with cardiovascular diseases was the subject of our interest. (3) Results: Nearly one-third of preterm-born children (32.43%) had valve problems and/or heart defects. The occurrence of systolic and diastolic prehypertension/hypertension was also inconsiderable in a group of preterm-born children (27.03% and 18.92%). The vast majority of children descending from either PPROM (85.45%) or PTB pregnancies (85.71%) had also significantly altered microRNA expression profiles at 90.0% specificity. (4) Conclusions: Postnatal microRNA expression profiles were significantly influenced by antenatal and early postnatal factors (gestational age at delivery, birth weight of newborns, and condition of newborns at the moment of birth). These findings may contribute to the explanation of increased cardiovascular risk in preterm-born children. These findings strongly support the belief that preterm-born children should be dispensarized for a long time to have access to specialized medical care.
RESUMEN
This prospective cross-sectional case-control study investigated the postpartal gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases in the peripheral white blood cells of women with anamnesis of preterm prelabor rupture of membranes (n = 58), spontaneous preterm birth (n = 55), and term delivery (n = 89) by a quantitative reverse transcription polymerase chain reaction. After pregnancies complicated by preterm prelabor rupture of membranes or spontaneous preterm birth, mothers showed diverse expression profiles for 25 out of 29 tested microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-499a-5p, and miR-574-3p). The earliest gestational ages at delivery and the lowest birth weights of newborns were associated with the highest postpartal levels of the previously mentioned microRNAs in maternal peripheral white blood cells. Administration of tocolytic drugs in order to prolong pregnancy, used in order to administer and complete a full course of antenatal corticosteroids, was associated with alterations in postpartal microRNA expression profiles to a lesser extent than in women with imminent delivery, where there was insufficient time for administration of tocolytics and antenatal corticosteroids. Overall, mothers who did not receive tocolytic therapy (miR-24-3p and miR-146a-5p) and mothers who did not receive corticosteroid therapy (miR-1-3p, miR-100-5p, and miR-143-3p) had increased or showed a trend toward increased postpartal microRNA expression when compared with mothers given tocolytic and corticosteroid therapy. In addition, mothers with serum C-reactive protein levels above 20 mg/L, who experienced preterm labour, showed a trend toward increased postpartal expression profiles of miR-143-3p and miR-199a-5p when compared with mothers with normal serum C-reactive protein levels. On the other hand, the occurrence of maternal leukocytosis, the presence of intra-amniotic inflammation (higher levels of interleukin 6 in the amniotic fluid), and the administration of antibiotics at the time of preterm delivery had no impact on postpartal microRNA expression profiles in mothers with a history of preterm delivery. Likewise, the condition of the newborns at the moment of birth, determined by Apgar scores at 5 and 10 min and the pH of cord arterial blood, had no influence on the postpartal expression profiles of mothers with a history of preterm delivery. These findings may contribute to explaining the increased cardiovascular risk in mothers with anamnesis of preterm delivery, and the greater increase of maternal cardiovascular risk with the decrease of gestational age at delivery. Women with preterm delivery in their anamnesis represent a high-risk group with special needs on a long-term basis, with a need to apply preventive and therapeutic interventions as early as possible.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , MicroARNs/genética , Complicaciones del Embarazo/genética , Nacimiento Prematuro/genética , Adulto , Peso al Nacer , Proteína C-Reactiva/metabolismo , Enfermedades Cardiovasculares/genética , Estudios de Casos y Controles , Trastornos Cerebrovasculares/genética , Parto Obstétrico , Femenino , Rotura Prematura de Membranas Fetales/genética , Humanos , Recién Nacido , Leucocitos/metabolismo , MicroARNs/sangre , MicroARNs/metabolismo , Persona de Mediana Edad , Madres , Proyectos Piloto , Periodo Posparto/genética , Embarazo , Complicaciones del Embarazo/sangre , Reproducibilidad de los Resultados , Transducción de Señal/genéticaRESUMEN
The principal goal of the study was to map common postpartal alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases induced by most frequently occurring pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth). In addition, the association analyses between individual abnormal clinical findings (overweight/obesity, central obesity, hypertension, on blood pressure treatment, history of infertility treatment, actual hormonal contraceptive use, the presence of trombophilic gene mutations, actual smoking status, increased serum levels of total cholesterol, HDL (high density lipoprotein) cholesterol, LDL (low density lipoprotein) cholesterol, triglycerides, lipoprotein A, CRP (C-reactive protein), and uric acid, and increased plasma levels of homocysteine) and microRNA expression levels were performed in mothers with respect/regardless to previous course of gestation. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth caused that a significant proportion of mothers (52.42% at 90.0% specificity) had substantially altered microRNA expression profile, which might originate lifelong cardiovascular risk. 26 out of 29 tested microRNAs were up-regulated in mothers with a history of such complicated pregnancies. MicroRNA expression profiles were also able to differentiate between mothers with normal and abnormal clinical findings (BMI (body mass index), waist circumference, systolic blood pressure, on blood pressure treatment, history of infertility treatment, and the presence of trombophilic gene mutations) irrespective of previous course of gestation. The treatment of hypertension even intensified upregulation of some microRNAs (miR-24-3p, and miR-342-3p) already present in women after complicated pregnancies. Newly, the presence of overweight/obesity (miR-155-5p), systolic hypertension (miR-92a-3p, and miR-210-3p), treatment for infertility (miR-155-5p), and treatment for hypertension (miR-210-3p) induced upregulation of several microRNAs. In general, mothers after complicated pregnancies are at increased risk of development of cardiovascular complications. Especially those mothers indicated to have postpartally altered microRNA expression profiles might be considered as a highly risky group that would benefit from dispensarization and implementation of primary prevention strategies.
RESUMEN
The goal was to assess how a history of any kind of pregnancy-related complication altered expression profile of microRNAs played a role in the pathogenesis of diabetes, cardiovascular and cerebrovascular diseases in the peripheral blood leukocytes of children at the age of 3-11 years. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes or spontaneous preterm birth causes that a significant proportion of children (57.42% to 90.0% specifically) had a substantially altered microRNA expression profile, which might be the origin of a lifelong cardiovascular risk. A total of 23 out of 29 tested microRNAs were upregulated in children born from such complicated gestation. The occurrence of overweight, obesity, valve problems and heart defects even intensified upregulation of microRNAs already present in children exposed to such pregnancy complications. The occurrence of overweight/obesity (miR-92a-3p, and miR-210-3p) and valve problems or heart defects (miR-342-3p) induced microRNA upregulation in children affected with pregnancy complications. Overall, 42.86% overweight/obese children and 27.36% children with valve problems or heart defects had even higher microRNA levels than children with normal clinical findings after complicated pregnancies. In addition, the microRNA expression profile was also able to differentiate between children descending from normal gestation in relation to the occurrence of overweight and obesity. Screening on the base of the combination of 19 microRNAs identified 70.0% overweight/obese children at 90.0% specificity. In general, children after complicated pregnancies, just as children after normal pregnancies, with abnormal findings are at a higher risk of the onset of cardiovascular complications, and their dispensarization, with the aim to implement primary prevention strategies, would be beneficial.
Asunto(s)
Enfermedades Cardiovasculares/genética , Hipertensión/genética , MicroARNs/genética , Obesidad/genética , Sobrepeso/genética , Complicaciones del Embarazo/genética , Adulto , Trastornos Cerebrovasculares/genética , Niño , Preescolar , Diabetes Gestacional/genética , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Hipertensión Inducida en el Embarazo/genética , Incidencia , Masculino , Persona de Mediana Edad , Preeclampsia/genética , Embarazo , Prehipertensión/genética , Estudios Prospectivos , Regulación hacia Arriba/genética , Adulto JovenRESUMEN
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Asunto(s)
Enfermedades Cardiovasculares/etiología , Trastornos Cerebrovasculares/etiología , Complicaciones de la Diabetes/complicaciones , Diabetes Gestacional/epidemiología , MicroARNs/genética , Complicaciones del Embarazo/etiología , Niño , Preescolar , Femenino , Humanos , Masculino , Embarazo , Estudios ProspectivosRESUMEN
Mothers with a history of gestational diabetes mellitus (GDM) have an increased risk of developing diabetes in the future and a lifelong cardiovascular risk. Postpartal expression profile of cardiovascular/cerebrovascular disease associated microRNAs was assessed 3-11 years after the delivery in whole peripheral blood of young and middle-aged mothers with a prior exposure to GDM with the aim to identify a high-risk group of mothers at risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases who would benefit from implementation of early primary prevention strategies and long-term follow-up. The hypothesis of the assessment of cardiovascular risk in women was based on the knowledge that a series of microRNAs play a role in the pathogenesis of diabetes mellitus and cardiovascular/cerebrovascular diseases. Abnormal expression profile of multiple microRNAs was found in women with a prior exposure to GDM (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, miR-499a-5p, and-miR-574-3p). Postpartal combined screening of miR-1-3p, miR-16-5p, miR-17-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-133a-3p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p showed the highest accuracy for the identification of mothers with a prior exposure to GDM at a higher risk of later development of cardiovascular/cerebrovascular diseases (AUC 0.900, p 0.001, sensitivity 77.48%, specificity 93.26%, cut off >0.611270413). It was able to identify 77.48% mothers with an increased cardiovascular risk at 10.0% FPR. Any of changes in epigenome (upregulation of miR-16-5p, miR-17-5p, miR-29a-3p, and miR-195-5p) that were induced by GDM-complicated pregnancy are long-acting and may predispose mothers affected with GDM to later development of diabetes mellitus and cardiovascular/cerebrovascular diseases. In addition, novel epigenetic changes (upregulation of serious of microRNAs) appeared in a proportion of women that were exposed to GDM throughout the postpartal life. Likewise, a previous occurrence of either GH, PE, and/or FGR, as well as a previous occurrence of GDM, is associated with the upregulation of miR-1-3p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-29a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p. On the other hand, upregulation of miR-16-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-103a-3p, miR-195-5p, miR-342-3p, and miR-574-3p represents a unique feature of aberrant expression profile of women with a prior exposure to GDM. Screening of particular microRNAs may stratify a high-risk group of mothers with a history of GDM who might benefit from implementation of early primary prevention strategies.
Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Trastornos Cerebrovasculares/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Gestacional/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/genética , Diabetes Gestacional/genética , Epigénesis Genética , Femenino , Expresión Génica , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Persona de Mediana Edad , Madres , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , Medición de Riesgo , Factores de Riesgo , Transcriptoma , Regulación hacia ArribaRESUMEN
The aim of the study was to examine the effect of previous pregnancies and classical cardiovascular risk factors on vascular endothelial function in a group of 264 young and middle-aged women 3 to 11 years postpartum. We examined microvascular functions by peripheral arterial tonometry and EndoPAT 2000 device with respect to a history of gestational hypertension, preeclampsia, fetal growth restriction, the severity of the disease with regard to the degree of clinical signs and delivery date. Besides, we compared Reactive Hyperemia Index (RHI) values and the prevalence of vascular endothelial dysfunction among the groups of women with normal and abnormal values of BMI, waist circumference, systolic and diastolic blood pressures, heart rate, total serum cholesterol levels, serum high-density lipoprotein cholesterol levels, serum low-density lipoprotein cholesterol levels, serum triglycerides levels, serum lipoprotein A levels, serum C-reactive protein levels, serum uric acid levels, and plasma homocysteine levels. Furthermore, we determined the effect of total number of pregnancies and total parity per woman, infertility and blood pressure treatment, presence of trombophilic gene mutations, current smoking of cigarettes, and current hormonal contraceptive use on the vascular endothelial function. We also examined the association between the vascular endothelial function and postpartum whole peripheral blood expression of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p). A proportion of overweight women (17.94% and 20.59%) and women with central obesity (18.64% and 21.19%) had significantly lower RHI values at 10.0% false positive rate (FPR) both before and after adjustment of the data for the age of patients. At 10.0% FPR, a proportion of women with vascular endothelial dysfunction (RHI ≤ 1.67) was identified to have up-regulated expression profile of miR-1-3p (11.76%), miR-23a-3p (17.65%), and miR-499a-5p (18.82%) in whole peripheral blood. RHI values also negatively correlated with expression of miR-1-3p, miR-23a-3p, and miR-499a-5p in whole peripheral blood. Otherwise, no significant impact of other studied factors on vascular endothelial function was found. We suppose that screening of these particular microRNAs associated with vascular endothelial dysfunction may help to stratify a highly risky group of young and middle-aged women that would benefit from early implementation of primary prevention strategies. Nevertheless, it is obvious, that vascular endothelial dysfunction is just one out of multiple cardiovascular risk factors which has only a partial impact on abnormal expression of cardiovascular and cerebrovascular disease associated microRNAs in whole peripheral blood of young and middle-aged women.