RESUMEN
INTRODUCTION: Although ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. MATERIALS AND METHODS: A total of 17 Sprague-Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood-brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. RESULTS: During the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. CONCLUSIONS: Hyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.
Asunto(s)
Circulación Cerebrovascular , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Ratas , Daño por Reperfusión/diagnóstico por imagen , Masculino , Modelos Animales de Enfermedad , Barrera Hematoencefálica/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Isquemia Encefálica/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodosRESUMEN
Sporadic vestibular schwannomas (VSs) are rare in children. When occurred in the pediatric population, they usually appear bilaterally and are related to neurofibromatosis type 2 (NF2). The current study reports a 4-year-old boy without family history of VS or NF2 who presented with a large (5.7-cm) VS involving the right cerebellopontine angle and internal auditory canal. Through seven-staged surgical interventions and two stereotactic γknife radiosurgery, the disease was stabilized. At 2-year follow-up, the child had right ear hearing loss, grade IV facial palsy, and normal motor function and gait. No definite evidence of gene mutation regarding NF2 can be identified after sequence analysis and deletion/duplication testing. This case highlights the significance of considering the possibility of sporadic VSs, even in very young children. It emphasizes the importance of not overlooking initial symptoms, as they may indicate the presence of a large tumor and could potentially result in delayed diagnosis.
Asunto(s)
Neuroma Acústico , Humanos , Masculino , Preescolar , Neuroma Acústico/cirugía , Neuroma Acústico/diagnóstico por imagen , RadiocirugiaRESUMEN
BACKGROUND: This study investigates the potential of diffusion tensor imaging (DTI) in identifying penumbral volume (PV) compared to the standard gadolinium-required perfusion-diffusion mismatch (PDM), utilizing a stack-based ensemble machine learning (ML) approach with enhanced explainability. METHODS: Sixteen male rats were subjected to middle cerebral artery occlusion. The penumbra was identified using PDM at 30 and 90 min after occlusion. We used 11 DTI-derived metrics and 14 distance-based features to train five voxel-wise ML models. The model predictions were integrated using stack-based ensemble techniques. ML-estimated and PDM-defined PVs were compared to evaluate model performance through volume similarity assessment, the Pearson correlation analysis, and Bland-Altman analysis. Feature importance was determined for explainability. RESULTS: In the test rats, the ML-estimated median PV was 106.4 mL (interquartile range 44.6-157.3 mL), whereas the PDM-defined median PV was 102.0 mL (52.1-144.9 mL). These PVs had a volume similarity of 0.88 (0.79-0.96), a Pearson correlation coefficient of 0.93 (p < 0.001), and a Bland-Altman bias of 2.5 mL (2.4% of the mean PDM-defined PV), with 95% limits of agreement ranging from -44.9 to 49.9 mL. Among the features used for PV prediction, the mean diffusivity was the most important feature. CONCLUSIONS: Our study confirmed that PV can be estimated using DTI metrics with a stack-based ensemble ML approach, yielding results comparable to the volume defined by the standard PDM. The model explainability enhanced its clinical relevance. Human studies are warranted to validate our findings. RELEVANCE STATEMENT: The proposed DTI-based ML model can estimate PV without the need for contrast agent administration, offering a valuable option for patients with kidney dysfunction. It also can serve as an alternative if perfusion map interpretation fails in the clinical setting. KEY POINTS: ⢠Penumbral volume can be estimated by DTI combined with stack-based ensemble ML. ⢠Mean diffusivity was the most important feature used for predicting penumbral volume. ⢠The proposed approach can be beneficial for patients with kidney dysfunction.
Asunto(s)
Imagen de Difusión Tensora , Aprendizaje Automático , Animales , Masculino , Ratas , Imagen de Difusión Tensora/métodos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Ratas Sprague-DawleyRESUMEN
Infant-type hemispheric glioma (IHG) is a rare pediatric brain tumor with variable response to chemotherapy and radiotherapy. Molecular insights into IHG can be useful in identifying potentially active targeted therapy. A male fetus was found to have congenital hydrocephalus at the gestational age of 37 weeks. Fetal MRI showed a 2.6 × 2.0-cm tumor located at the frontal horn of the left lateral ventricle, involving the left basal nuclei and thalamus. Tumor biopsy at the age of 2 days revealed an IHG consisting of spindle tumor cells with strong expression of GFAP and ALK. Targeted RNA sequencing detected a novel fusion gene of SOX5::ALK. After initial chemotherapy with cyclophosphamide, carboplatin, and etoposide for 2 cycles, the tumor size progressed markedly and the patient underwent a subtotal resection of brain tumor followed by treatment with lorlatinib, an ALK tyrosine kinase inhibitor with central nervous system (CNS) activity. After 3 months of treatment, reduction of tumor size was observed. After 14 months of treatment, partial response was achieved, and the infant had normal growth and development. In conclusion, we identified a case of congenital IHG with a novel SOX5::ALK fusion that had progressed after chemotherapy and showed partial response and clinical benefit after treatment with the CNS-active ALK inhibitor lorlatinib.
Asunto(s)
Aminopiridinas , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Glioma , Lactamas , Neoplasias Pulmonares , Pirazoles , Lactante , Niño , Masculino , Humanos , Recién Nacido , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quinasa de Linfoma Anaplásico/genética , Lactamas Macrocíclicas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/terapia , Glioma/tratamiento farmacológico , Factores de Transcripción SOXDRESUMEN
Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised two primary stages. First, the pretrained BiLuNet deep learning model was employed to extract essential features from X-ray images. Subsequently, five machine learning algorithms were trained using a five-fold cross-validation technique on a dataset of 311 patients to identify the optimal models to predict interbody cage height and postoperative PI-LL. LASSO regression and support vector regression demonstrated superior performance in predicting interbody cage height and postoperative PI-LL, respectively. For cage height prediction, the root mean square error (RMSE) was calculated as 1.01, and the model achieved the highest accuracy at a height of 12 mm, with exact prediction achieved in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error of the model was within 1 mm. Additionally, the model demonstrated satisfactory performance in predicting PI-LL, with an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion, our results indicate that machine learning models can reliably predict interbody cage height and postoperative PI-LL.
RESUMEN
Primary central nervous system germ cell tumors (CNS GCTs) are part of the GCTs in children and adults. This tumor entity presents with geographic variation, age, and sex predilection. There are two age peaks of incidence distribution at the first few months of life and in adolescence. CNS GCTs are heterogeneous in histopathological subtypes, locations, and tumor marker (AFP, ß-hCG) secretions. In the WHO CNS tumor classification, GCTS are classified as germinoma and nongerminomatous GCT (NGGCT) with different subtypes (including teratoma). Excluding mature teratoma, the remaining NGGCTs are malignant (NGMGCT). In teratoma, growing teratoma syndrome and teratoma with somatic-type malignancy should be highlighted. The common intracranial locations are pineal region, neurohypophysis (NH), bifocal pineal-NH, basal ganglia, and cerebral ventricle. Above 50% of intracranial GCTs (IGCTs) present obstructive hydrocephalus. Spinal tumors are rare. Age, locations, hydrocephalus, and serum/CSF titer of ß-hCG correlate with clinical manifestations. Delayed diagnosis is common in tumors arising in neurohypophysis, bifocal, and basal ganglia resulting in the increasing of physical dysfunction and hormonal deficits. Staging work-up includes CSF cytology for tumor cells and contrast-enhanced MRI of brain and spine for macroscopic metastasis before treatment commences. The therapeutic approach of CNS GCTs integrates locations, histopathology, staging, tumor marker level, and therapeutic classification. Treatment strategies include surgical biopsy/excision, chemotherapy, radiotherapy (single or combination). Secreting tumors with consistent imaging may not require histopathological diagnosis. Primary germinomas are highly radiosensitive and the therapeutic aim is to maintain high survival rate using optimal radiotherapy regimen with/without chemotherapy combination. Primary NGNGCTs are less radiosensitive. The therapeutic aim is to increase survival utilizing more intensive chemotherapy and radiotherapy. The negative prognostic factors are residue disease at the end of treatment and serum or CSF AFP level >1000 ng/mL at diagnosis. In refractory or recurrent NMGGCTs, besides high-dose chemotherapy, new therapy is necessary. Molecular profiling and analysis help for translational research. Survivors of pediatric brain tumors frequently experience cancer-related cognitive dysfunction, physical disability, pituitary hormone deficiency, and other CNS complications after cranial radiotherapy. Continuous surveillance and assessment may lead to improvements in treatment protocols, transdisciplinary interventions, after-treatment rehabilitation, and quality of life.
Asunto(s)
Neoplasias Encefálicas , Germinoma , Neoplasias de Células Germinales y Embrionarias , Neoplasias de la Médula Espinal , Neoplasias de la Columna Vertebral , Teratoma , Niño , Adulto , Adolescente , Humanos , alfa-Fetoproteínas/metabolismo , Calidad de Vida , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Germinoma/diagnóstico , Germinoma/patología , Germinoma/terapia , Teratoma/diagnóstico , Teratoma/terapia , Encéfalo/metabolismo , Estudios RetrospectivosRESUMEN
Twelve Asian patients with sarcoma received interval-compressed (ic-) chemotherapy scheduled every 14 days with a regimen of vincristine (2 mg/m2), doxorubicin (75 mg/m2), and cyclophosphamide (1200-2200 mg/m2) (VDC) alternating with a regimen of ifosfamide (9000 mg/m2) and etoposide (500 mg/m2) (IE), with filgrastim (5-10 mcg/kg/day) between cycles. Carboplatin (800 mg/m2) was added for CIC-rearranged sarcoma. The patients were treated with 129 cycles of ic-VDC/IE with a median interval of 19 days (interquartile range [IQR], 15-24 days. Median nadirs (IQR) were neutrophil count, 134 (30-396) × 106/L at day 11 (10-12), recovery by day 15 (14-17) and platelet count, 35 (23-83) × 109/L at day 11 (10-13), recovery by day 17 (14-21). Fever and bacteremia were observed in 36% and 8% of cycles, respectively. The diagnoses were Ewing sarcoma (6), rhabdomyosarcoma (3), myoepithelial carcinoma (1), malignant peripheral nerve sheath tumor (1), and CIC-DUX4 Sarcoma (1). Seven of the nine patients with measurable tumors responded (one CR and six PR). Interval-compressed chemotherapy is feasible in the treatment of Asian children and young adults with sarcomas.
RESUMEN
Spondylolisthesis refers to the displacement of a vertebral body relative to the vertrabra below it, which can cause radicular symptoms, back pain or leg pain. It usually occurs in the lower lumbar spine, especially in women over the age of 60. The prevalence of spondylolisthesis is expected to rise as the global population ages, requiring prudent action to promptly identify it in clinical settings. The goal of this study was to develop a computer-aided diagnostic (CADx) algorithm, LumbarNet, and to evaluate the efficiency of this model in automatically detecting spondylolisthesis from lumbar X-ray images. Built upon U-Net, feature fusion module (FFM) and collaborating with (i) a P-grade, (ii) a piecewise slope detection (PSD) scheme, and (iii) a dynamic shift (DS), LumbarNet was able to analyze complex structural patterns on lumbar X-ray images, including true lateral, flexion, and extension lateral views. Our results showed that the model achieved a mean intersection over union (mIOU) value of 0.88 in vertebral region segmentation and an accuracy of 88.83% in vertebral slip detection. We conclude that LumbarNet outperformed U-Net, a commonly used method in medical image segmentation, and could serve as a reliable method to identify spondylolisthesis.
RESUMEN
There is an increasing number of reported cases with neurological manifestations of COVID-19 in children. Symptoms include headache, general malaise, ageusia, seizure and alterations in consciousness. The differential diagnosis includes several potentially lethal conditions including encephalopathy, encephalitis, intracranial hemorrhage, thrombosis and adrenal crisis. We report the case of a 17-year-old boy with a positive antigen test of COVID-19 who presented with fever for one day, altered mental status and seizure, subsequently diagnosed with adrenal insufficiency. He had a history of panhypopituitarism secondary to a suprasellar craniopharyngioma treated with surgical resection; he was treated with regular hormone replacement therapy. After prompt administration of intravenous hydrocortisone, his mental status returned to normal within four hours. He recovered without neurologic complications. Adrenal insufficiency can present with neurological manifestations mimicking COVID-19 encephalopathy. Prompt recognition and treatment of adrenal insufficiency, especially in patients with brain tumors, Addison's disease or those recently treated with corticosteroids, can rapidly improve the clinical condition and prevent long-term consequences.
RESUMEN
Objective: The timing and nature of surgical intervention for semisolid abnormalities are dependent upon distinguishing between adenocarcinoma-in-situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (INV). We sought to develop and evaluate a quantitative imaging method to determine invasiveness of small, ground-glass lesions on computed tomography (CT) chest scans. Methods: The study comprised 268 patients from 4 institutions with resected (<=3 cm) semisolid lesions with confirmed histopathological diagnosis of MIA/AIS or INV. A total of 248 radiomic texture features from within the tumor nodule (intratumoral) and adjacent to the nodule (peritumoral) were extracted from manually annotated lung nodules of chest CT scans. The datasets were randomly divided, with 40% of patients used for training and 60% used for testing the machine classifier (Training DTrain, N=106; Testing, DTest, N=162). Results: The top five radiomic stable features included four intratumoral (Laws and Haralick feature families) and one peritumoral feature within 3 to 6 mm of the nodule (CoLlAGe feature family), which successfully differentiated INV from MIA/AIS nodules with an AUC of 0.917 [0.867-0.967] on DTrain and 0.863 [0.79-0.931] on DTest. The radiomics model successfully differentiated INV from MIA cases (<1 cm AUC: 0.76 [0.53-0.98], 1-2 cm AUC: 0.92 [0.85-0.98], 2-3 cm AUC: 0.95 [0.88-1]). The final integrated model combining the classifier with the radiologists' score gave the best AUC on DTest (AUC=0.909, p<0.001). Conclusions: Addition of advanced image analysis via radiomics to the routine visual assessment of CT scans help better differentiate adenocarcinoma subtypes and can aid in clinical decision making. Further prospective validation in this direction is warranted.
RESUMEN
BACKGROUND: Host immune response is a critical component in tumorigenesis and immune escape. Radiation is widely used for glioblastoma (GBM) and can induce marked tissue inflammation and substantially alter host immune response. However, the role of myeloperoxidase (MPO), a key enzyme in inflammation and host immune response, in tumorigenesis after radiotherapy is unclear. In this study, we aimed to determine how post-radiation MPO activity influences GBM and outcome. METHODS: We injected C57BL/6J or MPO-knockout mice with 005 mouse GBM stem cells intracranially. To observe MPO's effects on post-radiation tumor progression, we then irradiated the head with 10 Gy unfractionated and treated the mice with a specific MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH), or vehicle as control. We performed semi-quantitative longitudinal molecular MRI, enzymatic assays and flow cytometry to assess changes in inflammatory response and tumor size, and tracked survival. We also performed cell culture experiments in murine and human GBM cells to determine the effect of MPO on these cells. RESULTS: Brain irradiation increased the number of monocytes/macrophages and neutrophils, and boosted MPO activity by ten-fold in the glioma microenvironment. However, MPO inhibition dampened radiation-induced inflammation, demonstrating decreased MPO-specific signal on molecular MRI and attenuated neutrophil and inflammatory monocyte/macrophage recruitment to the glioma. Compared to saline-treated mice, both ABAH-treated and MPO-knockout mice had accelerated tumor growth and reduced survival. We further confirmed that MPO decreased tumor cell viability and proliferation in cell cultures. CONCLUSION: Local radiation to the brain initiated an acute systemic inflammatory response with increased MPO-carrying cells both in the periphery and the GBM, resulting in increased MPO activity in the tumor microenvironment. Inhibition or absence of MPO activity increased tumor growth and decreased host survival, revealing that elevated MPO activity after radiation has an anti-tumor role.
Asunto(s)
Glioblastoma , Peroxidasa , Animales , Encéfalo , Glioblastoma/genética , Glioblastoma/radioterapia , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: Atypical teratoid/rhabdoid tumor (AT/RT) is a rare, highly aggressive embryonal brain tumor most commonly presenting in young children. METHODS: We performed a nationwide, population-based study of AT/RT (ICD-O-3 code: 9508/3) in Taiwan using the Taiwan Cancer Registry Database and the National Death Certificate Database. RESULTS: A total of 47 cases (male/female = 29:18; median age at diagnosis, 23.3 months (IQR: 12.5-87.9)) were diagnosed with AT/RT between 1999 and 2014. AT/RT had higher prevalence in males (61.70%), in children < 36 months (55.32%), and at infratentorial or spinal locations (46.81%). Survival analyses demonstrated that patients ≥ 3 years of age (n = 21 (45%)) had a 5y-OS of 41% (p < 0.0001), treatment with radiotherapy only (n = 5 (11%)) led to a 5y-OS of 60%, treatment with chemotherapy with or without radiotherapy (n = 27 (62%)) was associated with a 5y-OS of 45% (p < 0.0001), and patients with a supratentorial tumor (n = 11 (23%)) had a 5y-OS of 51.95%. Predictors of better survival on univariate Cox proportional hazard modeling and confirmed with multivariate analysis included older age (≥1 year), supratentorial sites, and the administration of radiotherapy, chemotherapy, or both. Gender had no effect on survival. CONCLUSION: Older age, supratentorial site, and treatment with radiotherapy, chemotherapy, or both significantly improves the survival of patients with AT/RT.
RESUMEN
BACKGROUND: A giant hypothalamic hamartoma (GHH) is a rare congenital malformation only reported in a few cases in the literature and is often associated with precocious puberty, gelastic seizures, or less commonly, Pallister-Hall syndrome. Persistent syndrome of inappropriate antidiuretic hormone secretion (SIADH) is very rare in infancy, and most patients with GHH do not develop persistent SIADH, usually only transient electrolyte disturbances postoperatively. Previous cases of GHH have not been associated with persistent derangements in antidiuretic hormone levels. CASE DESCRIPTION: A 7-month-old male infant presented to our hospital with a history of an intracranial cystic lesion diagnosed at 23 weeks gestational age (GA), later impressed as a solid-cystic mass at 37 weeks GA by ultrasound prenatally. Postnatal MRI after birth showed a large mass with a dorsal cyst occupying the hypothalamus, causing hydrocephalus and brainstem compression. The patient started to have subtle seizures on the seventh day after birth and eventually developed dacrystic seizures. Hyponatremia with persistent SIADH was observed at 3 months of age before surgery. He received long-term oral sodium supplementation, polytherapy of anti-epileptic medications, ventriculocystostomy for progressive enlargement of the cystic cavity, and later surgical treatment for disconnection and partial resection which confirmed a histological diagnosis of hypothalamic hamartoma. CONCLUSION: In this case study, we present a novel association of GHH with persistent SIADH and a rare presentation of a cystic component at the dorsal part of the tumor. Clinicians should be aware of this potential endocrine derangement and provide emergent treatment.
Asunto(s)
Epilepsias Parciales , Hamartoma , Enfermedades Hipotalámicas , Síndrome de Secreción Inadecuada de ADH , Epilepsias Parciales/complicaciones , Hamartoma/complicaciones , Hamartoma/diagnóstico por imagen , Hamartoma/cirugía , Humanos , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/diagnóstico por imagen , Enfermedades Hipotalámicas/cirugía , Síndrome de Secreción Inadecuada de ADH/complicaciones , Síndrome de Secreción Inadecuada de ADH/diagnóstico , Lactante , Masculino , Convulsiones/complicaciones , VasopresinasRESUMEN
OBJECTIVE: Perfusion imaging identifies anterior circulation stroke patients who respond favorably to endovascular thrombectomy (ET), but its role in basilar artery occlusion (BAO) is unknown. We hypothesized that BAO patients with limited regions of severe hypoperfusion (time to reach maximum concentration in seconds [Tmax] > 10) would have a favorable response to ET compared to patients with more extensive regions involved. METHODS: We performed a multicenter retrospective cohort study of BAO patients with perfusion imaging prior to ET. We prespecified a Critical Area Perfusion Score (CAPS; 0-6 points), which quantified severe hypoperfusion (Tmax > 10) in cerebellum (1 point/hemisphere), pons (2 points), and midbrain and/or thalamus (2 points). Patients were dichotomized into favorable (CAPS ≤ 3) and unfavorable (CAPS > 3) groups. The primary outcome was a favorable functional outcome 90 days after ET (modified Rankin Scale = 0-3). RESULTS: One hundred three patients were included. CAPS ≤ 3 patients (87%) had a lower median National Institutes of Health Stroke Scale score (NIHSS; 12.5, interquartile range [IQR] = 7-22) compared to CAPS > 3 patients (13%; 23, IQR = 19-36; p = 0.01). Reperfusion was achieved in 84% of all patients, with no difference between CAPS groups (p = 0.42). Sixty-four percent of reperfused CAPS ≤ 3 patients had a favorable outcome compared to 8% of nonreperfused CAPS ≤ 3 patients (odds ratio [OR] = 21.0, 95% confidence interval [CI] = 2.6-170; p < 0.001). No CAPS > 3 patients had a favorable outcome, regardless of reperfusion. In a multivariate regression analysis, CAPS ≤ 3 was a robust independent predictor of favorable outcome after adjustment for reperfusion, age, and pre-ET NIHSS (OR = 39.25, 95% CI = 1.34->999, p = 0.04). INTERPRETATION: BAO patients with limited regions of severe hypoperfusion had a favorable response to reperfusion following ET. However, patients with more extensive regions of hypoperfusion in critical brain regions did not benefit from endovascular reperfusion. ANN NEUROL 2022;91:23-32.
Asunto(s)
Imagen de Perfusión/métodos , Trombectomía , Resultado del Tratamiento , Insuficiencia Vertebrobasilar/diagnóstico por imagen , Insuficiencia Vertebrobasilar/cirugía , Adulto , Anciano , Estudios de Cohortes , Procedimientos Endovasculares/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Reperfusión/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Insuficiencia Vertebrobasilar/patologíaRESUMEN
Introduction: Recent trials have demonstrated the superior efficacy of mechanical thrombectomy over other medical treatments for acute ischemic stroke; however, not every large vessel occlusion (LVO) can be recanalized using a single thrombectomy device. Rescue devices were proved to increase the reperfusion rate, but the efficacy is unclear. Objective: In this retrospective study, we evaluated the efficacy of rescue therapy in different locations of LVO. Methods: We analyzed the outcomes of mechanical thrombectomy from a prospective registry of consecutive 82 patients in Taipei Medical University Hospital. The reperfusion rate and the functional outcome were compared in patients who received first-line therapy only and patients who need rescue therapy. Results: An 84.1% reperfusion rate was achieved in our cohort. We applied first-line stent retriever (SR) treatment in 6 patients, among which 4 (66.6%) achieved successful reperfusion. We applied a direct-aspiration first-pass technique (ADAPT) as the first-line treatment in 76 patients, among which 46 (60.5%) achieved successful reperfusion. Successful reperfusion could not be achieved in 30 cases (39.5%); therefore, we applied a second-line rescue SR for 28 patients, and reperfusion was established in 18 (64.3%) of them. These results revealed that the LVO in anterior circulation has a higher chance to respond to SR rescue therapy than posterior circulation lesions (68 vs. 33.3%, P < 0.001). Patients who received only first-line therapy exhibited significantly better functional outcomes than those who were also treated with rescue SR therapy (41.2 vs. 16.7%, P = 0.001). In addition, patients with LVO in the anterior circulation were found to have a higher probability of achieving functional independence than patients with posterior circulation lesions (10.7 vs. 0.0%, P < 0.001). The adjusted multivariate analysis revealed that successful reperfusion and treatment type (first-line or rescue therapy) were significantly related to a modified Rankin Scale (mRS) score at 90 days. Conclusion: This study reveals that rescue SR therapy improves the reperfusion rate. Patients who require rescue SR therapy have a lower likelihood of functional independence. LVO in the anterior circulation responds better to rescue SR therapy and results in better functional outcomes than posterior circulation lesions.
RESUMEN
PURPOSE: Medulloblastoma (MB) is a highly malignant pediatric brain tumor. In the latest classification, medulloblastoma is divided into four distinct groups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. We analyzed the magnetic resonance imaging radiomics features to find the imaging surrogates of the 4 molecular subgroups of MB. MATERIAL AND METHODS: Frozen tissue, imaging data, and clinical data of 38 patients with medulloblastoma were included from Taipei Medical University Hospital and Taipei Veterans General Hospital. Molecular clustering was performed based on the gene expression level of 22 subgroup-specific signature genes. A total 253 magnetic resonance imaging radiomic features were generated from each subject for comparison between different molecular subgroups. RESULTS: Our cohort consisted of 7 (18.4%) patients with WNT medulloblastoma, 12 (31.6%) with SHH tumor, 8 (21.1%) with Group 3 tumor, and 11 (28.9%) with Group 4 tumor. 8 radiomics gray-level co-occurrence matrix texture (GLCM) features were significantly different between 4 molecular subgroups of MB. In addition, for tumors with higher values in a gray-level run length matrix feature-Short Run Low Gray-Level Emphasis, patients have shorter survival times than patients with low values of this feature (p = 0.04). The receiver operating characteristic analysis revealed optimal performance of the preliminary prediction model based on GLCM features for predicting WNT, Group 3, and Group 4 MB (area under the curve = 0.82, 0.72, and 0.78, respectively). CONCLUSION: The preliminary result revealed that 8 contrast-enhanced T1-weighted imaging texture features were significantly different between 4 molecular subgroups of MB. Together with the prediction models, the radiomics features may provide suggestions for stratifying patients with MB into different risk groups.
Asunto(s)
Neoplasias Cerebelosas , Imagen por Resonancia Magnética , Meduloblastoma , Adolescente , Niño , Estudios de Cohortes , Humanos , Masculino , Estudios Retrospectivos , Factores de RiesgoRESUMEN
OBJECTIVES: Whether febrile seizures (FS) produce long-term injury to the hippocampus or other brain structures is a critical question concerning focal onset seizures in children. Our aims are to evaluate the effect of FS on subfields of the hippocampus, thalamic nuclei, amygdala, cortical thickness, and surface area quantitatively in children with FS who later developed focal seizures and to identify biomarkers based on MRI structures. METHODS: Children who had focal onset seizures with or without previous FS and normal 3-T MRI findings were included retrospectively. The MRI was performed within 2 years after the onset of focal seizures. Age-matched controls were also recruited. Hippocampal subfields and thalamic nuclei, amygdala volumes, cortical thickness, and cortical surface area in individual cortical regions were segmented by FreeSurfer version 7.1.1. Volumetric and morphometric data among children who had focal seizures with or without previous FS, as well as controls, were compared and correlated with clinical parameters. RESULTS: Children with a history of FS who had focal seizures exhibited smaller right cornu ammonis (CA) 1 and right molecular cell layer of the hippocampus, compared to those without FS. A larger left hippocampal fissure was also found in FS with focal seizures compared to age-matched controls. There were no statistically significant differences in each nucleus of the thalamus, amygdala, cortical thickness, and surface area of each cortical region among the three groups. A smaller whole hippocampal volume was found for the right hippocampus in children with FS and focal seizures compared to those without FS. A trend of negative correlation was found between the frequency of FS and the left and right CA1 subfield volume ratios of the hippocampus. CONCLUSIONS: We concluded that multiple episodes of FS may be associated with a trivial difference in volume reduction in the CA1 and molecular layer of the right hippocampus and an enlarged hippocampal fissure of the left hippocampus, but not with individual cortical thicknesses, surface area, thalamic nuclei, or amygdala in children with focal onset seizures.The hippocampal subfield CA1 and molecular layer of the right hippocampus may be more vulnerable than the cortices in children with focal seizures who experienced multiple FS episodes. This study highlights the minimal differences in brain volumes among children with recent onset focal seizures with or without FS history and controls, suggesting that the brain injurious aspects of the FS and recent onset focal seizures may have been previously overstated. This suggests that physicians can be reassuring about brain injury associated with these seizure types when discussing outcomes with parents and patients.
RESUMEN
BACKGROUND: Epileptic surgery is the potentially curative treatment for children with refractory seizures. The study aimed to quantify and analyze high frequency oscillation (HFO) ripples and interictal epileptiform discharges (EDs) in intraoperative electrocorticography (ECoG) between malformation of cortical dysplasia (MCD) and non-MCD children with MRI-lesional focal epilepsy, and evaluate of seizure outcomes after epileptic surgery. METHODS: The intraoperative ECoG was performed before and after lesionectomy. Quantifications of HFO ripples and interictal EDs of ECoG by frequency, amplitude, and foci of intraoperative ECoG were performed based on electrode location, and the characteristics of ECoG recordings were analyzed in each patient based on their histopathology. Seizure outcome after surgery according to their quantitative ECoG findings was analyzed. RESULTS: Frequency of EDs and HFO ripple rates in preresection ECoG were significantly higher in children with MCD compared with non-MCD (p = 0.018 and p = 0.002, respectively). Higher frequencies of EDs and ripple rates in preresection ECoG were observed in residual seizures than in seizure-free children (p = 0.045 and p = 0.005, respectively). Clinically, children with residual seizures after surgery were significantly younger at the onset, had a trend of higher seizure frequency and higher spike frequency of presurgical videoEEG. CONCLUSION: Our results suggested that quantification of intraoperative ECoG predicted seizure outcomes and reflected different ED pattern and frequencies between MCD and non-dysplastic histopathology among children who underwent resective epileptic surgery. The results of our study were encouraging and indicated that intraoperative ECoG improved the outcomes of surgery in children with epilepsy.