Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958386

RESUMEN

The prognosis of pancreatic adenocarcinoma (PDAC) remains poor, with a 5-year survival rate of 12%. Although radiotherapy is effective for the locoregional control of PDAC, it does not have survival benefits compared with systemic chemotherapy. Most patients with localized PDAC develop distant metastasis shortly after diagnosis. Upfront chemotherapy has been suggested so that patients with localized PDAC with early distant metastasis do not have to undergo radical local therapy. Several potential tissue markers have been identified for selecting patients who may benefit from local radiotherapy, thereby prolonging their survival. This review summarizes these biomarkers including SMAD4, which is significantly associated with PDAC failure patterns and survival. In particular, Krüppel-like factor 10 (KLF10) is an early response transcription factor of transforming growth factor (TGF)-ß. Unlike TGF-ß in advanced cancers, KLF10 loss in two-thirds of patients with PDAC was associated with rapid distant metastasis and radioresistance; thus, KLF10 can serve as a predictive and therapeutic marker for PDAC. For patients with resectable PDAC, a combination of KLF10 and SMAD4 expression in tumor tissues may help select those who may benefit the most from additional radiotherapy. Future trials should consider upfront systemic therapy or include molecular biomarker-enriched patients without early distant metastasis.

2.
Environ Toxicol ; 38(2): 451-459, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36413041

RESUMEN

Diphenyl difluoroketone (EF-24), a synthetic curcumin analog, has enhanced bioavailability over curcumin. EF-24 acts more powerful bioactivity for anti-inflammatory and anti-cancer activity. However, the effects and mechanism of EF-24 on cervical cancer has not been fully investigated. Herein, this study evaluated the effects of EF-24 on TPA-induced cellular migration of cervical cancer. The results showed that EF-24 substantially reduced the cellular migration and cellular invasion of the HeLa and SiHa cells. Moreover, gelatin zymography, western blotting analyses and real-time PCR revealed that EF-24 suppressed Matrix metalloproteinase-9 (MMP-9) activity, protein expression and mRNA levels. Mechanistically, EF-24 inhibited the phosphorylation of the p38 signaling pathway. In conclusion, EF-24 inhibited TPA-induced cellular migration and cellular invasion of cervical cancer cell lines through modulating MMP-9 expression via downregulating signaling p38 pathway and EF-24 may have potential to serve as a chemopreventive agent of cervical cancer.


Asunto(s)
Curcumina , Metaloproteinasa 9 de la Matriz , Neoplasias del Cuello Uterino , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Transducción de Señal , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/patología
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499426

RESUMEN

Cervical cancer has a poor prognosis and is the fourth most common cancer among women. Dihydromyricetin (DHM), a flavonoid compound, exhibits several pharmacological activities, including anticancer effects; however, the effects of DHM on cervical cancer have received insufficient research attention. This study examined the antitumor activity and underlying mechanisms of DHM on human cervical cancer. Our results indicated that DHM inhibits migration and invasion in HeLa and SiHa cell lines. Mechanistically, RNA sequencing analysis revealed that DHM suppressed S100A4 mRNA expression in HeLa cells. Moreover, DHM inhibited the protein expressions of ß-catenin and GSK3ß through the regulated extracellular-signal-regulated kinase (ERK)1/2 signaling pathway. By using the ERK1/2 activator, T-BHQ, reverted ß-catenin and S100A4 protein expression and cell migration, which were reduced in response to DHM. In conclusion, our study indicated that DHM inhibited cell migration by reducing the S100A4 expression through the ERK1/2/ß-catenin pathway in human cervical cancer cell lines.


Asunto(s)
Flavonoles , Proteína de Unión al Calcio S100A4 , Neoplasias del Cuello Uterino , beta Catenina , Femenino , Humanos , beta Catenina/metabolismo , Movimiento Celular , Células HeLa , Sistema de Señalización de MAP Quinasas , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Flavonoles/farmacología
4.
Pharmaceutics ; 14(2)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35214097

RESUMEN

Arctiin, a lignan glycoside, is isolated from Arctium lappa L. The anticancer effects of arctiin have been demonstrated in several studies. However, no research has been conducted on the anti-migration effect of arctiin in cervical cancer cells. The present study examined the effects of arctiin on cervical cancer cells and investigated the possible molecular mechanism. We demonstrated that arctiin exhibited low cytotoxicity and significantly inhibited cell migration and invasion in human cervical cancer cells. The S100A4 protein expression and mRNA levels were significantly reduced in HeLa and SiHa cells with arctiin treatment. Furthermore, silencing S100A4 by using small interfering RNA reduced cell migration, while overexpression of S100A4 mitigated the migration inhibition imposed by arctiin in cervical cancer cells. Western blotting revealed that arctiin significantly reduced phosphoinositide 3-kinase (PI3K) and phosphorylation of Akt in cervical cancer cells. Moreover, selective Akt induction by an Akt activator, SC-79, reverted cervical cancer cell migration and S100A4 protein expression, which were reduced in response to arctiin. Taken together, these results suggest that arctiin inhibits cervical cancer cell migration and invasion through suppression of S100A4 and the PI3K/Akt pathway.

5.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803236

RESUMEN

Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.

6.
Oncotarget ; 9(25): 17564-17575, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29707130

RESUMEN

Sulforaphane has been demonstrated to exert numerous biological effects, such as neuroprotective, anti-inflammatory, and anticancer effects. However, the detailed effects of sulforaphane on human oral cancer cell migration and the underlying mechanisms remain unclear. In this study, we observed that sulforaphane attenuated SCC-9 and SCC-14 cell motility and invasiveness by reducing cathepsin S expression. Moreover, sulforaphane increased microtubule-associated protein 1 light chain 3 (LC3) conversion, and the knockdown of LC3 by siRNA increased cell migration ability. Regarding the mechanism, sulforaphane inhibited the cell motility of oral cancer cells through the extracellular signal-regulated kinase (ERK) pathway, which in turn reversed cell motility. In conclusion, sulforaphane suppress cathepsin S expression by inducing autophage through ERK signaling pathway. Thus, cathepsin S and LC3 may be new targets for oral cancer treatment.

7.
Cell Death Dis ; 8(10): e3089, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28981104

RESUMEN

Hispolon, a phenolic compound isolated from Phellinus igniarius, induces apoptosis and anti-tumor effects in cancers. However, the molecular mechanism involved in hispolon-mediated tumor-suppressing activities observed in cervical cancer is poorly characterized. Here, we demonstrated that treatment with hispolon inhibited cell metastasis in two cervical cancer cell lines. In addition, the downregulation of the lysosomal protease Cathepsin S (CTSS) was critical for hispolon-mediated suppression of tumor cell metastasis in both in vitro and in vivo models. Moreover, hispolon induced autophagy, which increased LC3 conversion and acidic vesicular organelle formation. Mechanistically, hispolon inhibited the cell motility of cervical cells through the extracellular signal-regulated kinase (ERK) pathway, and blocking of the ERK pathway reversed autophagy-mediated cell motility and CTSS inhibition. Our results indicate that autophagy is essential for decreasing CTSS activity to inhibit tumor metastasis by hispolon treatment in cervical cancer; this finding provides a new perspective on molecular regulation.


Asunto(s)
Autofagia/efectos de los fármacos , Catecoles/administración & dosificación , Catepsinas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS One ; 10(4): e0125175, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25897844

RESUMEN

Fine sediments, which account for the majority of total fluvial sediment flux, have been suggested to degrade coral reefs on a global scale. Furthermore, sediment impacts can be exacerbated by extreme rainfall events associated with global climate change and anthropogenic nutrient enrichment. We report the findings from a series of mesocosm experiments exploring the effects of short-term sedimentation and nutrient enrichment on the interactions between the hard coral Acropora muricata, the sea anemone Mesactinia ganesis, and the green macroalga Codium edule. Mesocosms were manipulated to simulate either unimpacted reefs or reefs exposed to elevated levels of fine sediments for 10 or 14 days to simulate the effects of heavy rainfall. The first and second experiments were aimed to examine the effects of inorganic and organic sediments, respectively. The third experiment was designed to examine the interactive effects of nutrient enrichment and elevated sediment loads. Neither inorganic nor organic sediment loadings significantly affected the physiological performance of the coral, but, importantly, did reduce its ability to compete with other organisms. Photosynthetic efficiencies of both the green macroalga and the sea anemone increased in response to both sediment loadings when they were simultaneously exposed to nutrient enrichment. While organic sediment loading increased the nitrogen content of the green macroalga in the first experiment, inorganic sediment loading increased its phosphorus content in the second experiment. The coral mortality due to sea anemones attack was significantly greater upon exposure to enriched levels of organic sediments and nutrients. Our findings suggest that the combined effects of short-term sedimentation and nutrient enrichment could cause replacement of corals by sea anemones on certain coral reefs.


Asunto(s)
Antozoos/efectos de los fármacos , Nitrógeno/farmacología , Material Particulado/farmacología , Fósforo/farmacología , Anémonas de Mar/efectos de los fármacos , Animales , Antozoos/fisiología , Chlorophyta/efectos de los fármacos , Chlorophyta/fisiología , Arrecifes de Coral , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Anémonas de Mar/fisiología , Agua de Mar , Taiwán
9.
Tumour Biol ; 35(9): 8999-9007, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24903383

RESUMEN

The purpose of this study was to investigate genetic impact of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) gene polymorphisms on the susceptibility and clinicopathological characteristics of hepatocellular carcinoma (HCC). A total of 759 subjects, including 530 healthy controls and 229 patients with hepatocellular carcinoma, were recruited in this study. Allelic discrimination of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) polymorphisms was assessed with the ABI StepOne™ Real-Time PCR System. Among women group, individuals with TC or CC alleles of TIMP-3 -1296 T>C gene polymorphism protected against HCC (AOR = 0.35, 95% confidence interval (CI) = 0.12-0.97; p = 0.04) compared to individuals with TT alleles, after adjusting for other confounders. Also, women with TC alleles and with TC or CC alleles of TIMP-4 -55 T>C polymorphisms had a 2.52-fold risk (95%CI = 1.23-5.13; p = 0.01) and 2.47-fold risk (95%CI = 1.26-4.87; p = 0.008) of developing HCC compared to individuals with TT alleles, after adjusting for other confounders. There was no synergistic effect between gene polymorphism and environmental risk factors, including tobacco and alcohol consumptions and clinical statuses of HCC as well as serum expression of liver-related clinicopathological markers. In conclusion, gene polymorphisms of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) play a role in the susceptibility of HCC among Taiwan women.


Asunto(s)
Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidores Tisulares de Metaloproteinasas/genética , Análisis de Varianza , Pueblo Asiatico/genética , Carcinoma Hepatocelular/etnología , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/etnología , Genotipo , Humanos , Desequilibrio de Ligamiento , Neoplasias Hepáticas/etnología , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores Sexuales , Taiwán , Inhibidor Tisular de Metaloproteinasa-4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA