Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38651806

RESUMEN

The rates of many electrocatalytic reactions can be strongly affected by the structure and dynamics of the electrochemical double layer, which in turn can be tuned by the concentration and identity of the supporting electrolyte's cation. The effect of cations on an electrocatalytic process depends on a complex interplay between electrolyte components, electrode material and surface structure, applied electrode potential, and reaction intermediates. Although cation effects remain insufficiently understood, the principal mechanisms underlying cation-dependent reactivity and selectivity are beginning to emerge. In this Perspective, we summarize and critically examine recent advances in this area in the context of the hydrogen evolution reaction (HER) and CO2-to-CO conversion, which are among the most intensively studied and promising electrocatalytic reactions for the sustainable production of commodity chemicals and fuels. Improving the kinetics of the HER in base and enabling energetically efficient and selective CO2 reduction at low pH are key challenges in electrocatalysis. The physical insights from the recent literature illustrate how cation effects can be utilized to help achieve these goals and to steer other electrocatalytic processes of technological relevance.

2.
Comput Struct Biotechnol J ; 21: 4030-4043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664175

RESUMEN

Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.

3.
J Am Chem Soc ; 143(13): 5182-5190, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33779171

RESUMEN

Applying metal-organic frameworks (MOFs) on the surface of other materials to form multifunctional materials has recently attracted great attention; however, directing the MOF overgrowth is challenging due to the orders of magnitude differences in structural dimensions. In this work, we developed a universal strategy to mediate MOF growth on the surface of metal nanoparticles (NPs), by taking advantage of the dynamic nature of weakly adsorbed capping agents. During this colloidal process, the capping agents gradually dissociate from the metal surface, replaced in situ by the MOF. The MOF grows to generate a well-defined NP-MOF interface without a trapped capping agent, resulting in a uniform core-shell structure of one NP encapsulated in one single-crystalline MOF nanocrystal with specific facet alignment. The concept was demonstrated by coating ZIF-8 and UiO-66-type MOFs on shaped metal NPs capped by cetyltrimethylammonium surfactants, and the formation of the well-defined NP-MOF interface was monitored by spectroscopies. The defined interface outperforms ill-defined ones generated via conventional methods, displaying a high selectivity to unsaturated alcohols for the hydrogenation of an α,ß-unsaturated aldehyde. This strategy opens a new route to create aligned interfaces between materials with vastly different structural dimensions.

4.
Vaccine ; 38(5): 1048-1056, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31812463

RESUMEN

BACKGROUND: Intranasal influenza vaccines may provide protective efficacy by inducing both systemic antibodies and local secretory IgA. Live attenuated intranasal vaccines are not feasible for high-risk groups. A previously constructed inactivated vaccine with adjuvant revealed an association with neurological events in some studies. In this phase II trial, we aimed to evaluate the safety and immunogenicity of an intranasal influenza vaccine with a novel adjuvant, heat-labile enterotoxin (LT)-derived from E. coli (LTh(αK)). METHODS: This study is a multicenter, randomized controlled, double-blind, phase II trial of an intranasal influenza vaccine containing 22.5 µg of the hemagglutinin (HA) antigen of three influenza strains in combination with 2 different LTh(αK) adjuvant doses (group 1: 30 µg; group 2: 45 µg) in subjects 20-70 years old. The control vaccine was 22.5 µg of influenza HA antigen alone (group 3). The vaccine was intranasally administered on days 1 and 8. Serum anti-HA antibody and nasal secretory IgA were measured, and adverse events (AEs) were recorded prevaccination and 29 (±2) days postvaccination. RESULTS: Of 354 participants randomized in the study, 340 received two vaccine doses. AEs were mostly mild, and there was no discontinuation related to the vaccine. Only a higher frequency of diarrhea after the first dose was noted among group 2 (11.5%) than among group 3 (2.8%), and there was no significant difference after the second dose. The three groups had comparable serum anti-HA antibody immunogenicity. However, the adjuvanted vaccines induced greater mucosal IgA antibody production than the control vaccine. In a subgroup analysis, group 1 participants achieved adequate immunogenicity among both 20- to 60- and 61- to 70-year-old participants. CONCLUSION: The intranasal influenza vaccine adjuvanted with LTh(αK) is generally safe and could provide systemic and local antibody responses. Adjuvanted vaccines were significantly more immunogenic than the nonadjuvanted control vaccine in mucosal immunity. ClinicalTrials.gov Identifier: NCT03784885.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Gripe Humana , Vacunas de Productos Inactivados/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Toxinas Bacterianas/administración & dosificación , Método Doble Ciego , Enterotoxinas/administración & dosificación , Escherichia coli , Proteínas de Escherichia coli/administración & dosificación , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Vacunas de Productos Inactivados/efectos adversos , Adulto Joven
5.
Nat Commun ; 10(1): 5002, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676820

RESUMEN

Metal-organic frameworks (MOFs) have recently garnered consideration as an attractive solid substrate because the highly tunable MOF framework can not only serve as an inert host but also enhance the selectivity, stability, and/or activity of the enzymes. Herein, we demonstrate the advantages of using a mechanochemical strategy to encapsulate enzymes into robust MOFs. A range of enzymes, namely ß-glucosidase, invertase, ß-galactosidase, and catalase, are encapsulated in ZIF-8, UiO-66-NH2, or Zn-MOF-74 via a ball milling process. The solid-state mechanochemical strategy is rapid and minimizes the use of organic solvents and strong acids during synthesis, allowing the encapsulation of enzymes into three prototypical robust MOFs while maintaining enzymatic biological activity. The activity of encapsulated enzyme is demonstrated and shows increased resistance to proteases, even under acidic conditions. This work represents a step toward the creation of a suite of biomolecule-in-MOF composites for application in a variety of industrial processes.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Metales/química , Biocatálisis , Catalasa/química , Catalasa/metabolismo , Catalasa/ultraestructura , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Enzimas Inmovilizadas/ultraestructura , Estructuras Metalorgánicas/síntesis química , Microscopía Electrónica de Rastreo , Difracción de Polvo , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/ultraestructura , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , beta-Galactosidasa/ultraestructura , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , beta-Glucosidasa/ultraestructura
6.
Vaccine ; 37(14): 1994-2003, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30837170

RESUMEN

BACKGROUND: A nasal influenza vaccine has been available only in a live attenuated form, which limits the range of recipients to immune-competent individuals. The present study evaluated a newly developed intranasal inactivated influenza vaccine with a novel adjuvant, heat-labile enterotoxin (LT) derived from E. coli (LTh(αK)). METHODS: The study was a randomized, double-blind, controlled phase I trial to evaluate the safety and immunogenicity of an intranasal vaccine containing the trivalent influenza HA antigen (7.5 µg each of A/California/7/09 (H1N1)-like virus, A/Victoria/210/2009 (H3N2) virus, and B/Brisbane/60/2008-like virus) in combination with 4 different doses of adjuvant LTh(αK) (7.5, 15, 30 or 45 µg) and 22.5 µg of influenza HA antigen alone (control vaccine). The vaccine was intranasally administered on Days 0 and 7. A safety evaluation commenced for 180 days, and hemagglutination inhibition (HI) antibody titers and nasal HA-specific IgA titers on Day 0 and Day 28 were assessed to determine whether an immunogenic response was elicited. RESULTS: From November 2012 to September 2013, a total of 36 subjects were enrolled. Twenty-four subjects received an adjuvanted vaccine, and 12 subjects received a control vaccine. The most common adverse event (AE) was mild nasal discomfort, and systemic AEs were mild fatigue and headache. Only two subjects discontinued the study because of an AE (one had grade 3 fever, and one had nodal arrhythmia). In the group with 45 µg of LTh(αK), the seroprotection rates were 100%, 100% and 80%, and the nasal IgA conversion factors were 7.90, 7.46 and 12.27 for the A/H3N2, A/H1N1 and split B strains, respectively. Adjuvant LTh(αK) vaccine showed a significant enhancement in mucosal immunity in split B -specific IgA. CONCLUSION: The intranasal inactivated influenza vaccine is generally safe, and the LTh(αK)-adjuvanted vaccine is more immunogenic than non-adjuvanted control vaccine. ClinicalTrials.gov Identifier: NCT03293732.


Asunto(s)
Adyuvantes Inmunológicos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Administración Intranasal , Adulto , Anticuerpos Antivirales/inmunología , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunoglobulina A/inmunología , Vacunas contra la Influenza/efectos adversos , Masculino , Evaluación de Resultado en la Atención de Salud , Proyectos de Investigación , Vacunas de Productos Inactivados/efectos adversos , Adulto Joven
7.
J Am Chem Soc ; 139(19): 6530-6533, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28460166

RESUMEN

We show that an enzyme maintains its biological function under a wider range of conditions after being embedded in metal-organic framework (MOF) microcrystals via a de novo approach. This enhanced stability arises from confinement of the enzyme molecules in the mesoporous cavities in the MOFs, which reduces the structural mobility of enzyme molecules. We embedded catalase (CAT) into zeolitic imidazolate frameworks (ZIF-90 and ZIF-8), and then exposed both embedded CAT and free CAT to a denature reagent (i.e., urea) and high temperatures (i.e., 80 °C). The embedded CAT maintains its biological function in the decomposition of hydrogen peroxide even when exposed to 6 M urea and 80 °C, with apparent rate constants kobs (s-1) of 1.30 × 10-3 and 1.05 × 10-3, respectively, while free CAT shows undetectable activity. A fluorescence spectroscopy study shows that the structural conformation of the embedded CAT changes less under these denaturing conditions than free CAT.


Asunto(s)
Catalasa/química , Imidazoles/farmacología , Estructuras Metalorgánicas/farmacología , Desplegamiento Proteico/efectos de los fármacos , Zeolitas/farmacología , Catalasa/metabolismo , Imidazoles/química , Estructuras Metalorgánicas/química , Tamaño de la Partícula , Porosidad/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Espectrometría de Fluorescencia , Propiedades de Superficie/efectos de los fármacos , Temperatura , Zeolitas/química
8.
Biochem Biophys Res Commun ; 473(4): 808-813, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27040766

RESUMEN

Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antígenos CD20/inmunología , Complejo CD3/inmunología , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Estabilidad de Medicamentos , Humanos , Células Jurkat , Linfoma de Células B/patología , Ingeniería de Proteínas , Resultado del Tratamiento
9.
PLoS One ; 9(3): e90293, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637787

RESUMEN

Various mutant forms of Escherichia coli heat-labile enterotoxin (LT) have been used as a mucosal adjuvant for vaccines, as it enhances immune responses to specific antigens including antigen-specific IgA antibodies when administrated intranasally or orally. We hypothesized that a detoxified mutant form of LT, LTS61K, could modulate dendritic cell (DC) function and alleviate allergen-induced airway inflammation. Two protocols, preventative and therapeutic, were used to evaluate the effects of LTS61K in a Dermatophagoides pteronyssinus (Der p)-sensitized and challenged murine model of asthma. LTS61K or Der p-primed bone marrow-derived dendritic cells (BMDCs) were also adoptively transferred into Der p-sensitized and challenged mice. Intranasal inoculations with LTS61K or LTS61K/Der p decreased allergen-induced airway inflammation and alleviated systemic TH2-type immune responses. Bronchoalveolar lavage fluid (BALF) and sera from LTS61K/Der p-treated mice also had higher concentrations of Der p-specific immunoglobulin (Ig) A than those of other groups. In vitro, BMDCs stimulated with Der p underwent cellular maturation and secreted proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)α In contrast, Der p-stimulated BMDCs that were pretreated with LTS61K showed decreased IL-6 and TNFα production and were less mature. Intratracheal adoptive transfer of LTS61K- or LTS61K/Der p-primed BMDCs into Der p-sensitized mice reduced inflammatory cell infiltration and TH2-type chemokines in BALF and alleviated airway inflammation in treated mice. LTS61K influenced DC maturation and decreased inflammatory cytokine production. Moreover, LTS61K/Der p induced increased Der p-specific IgA production to decrease allergic TH2 cytokine responses and alleviated airway inflammation in Der p-sensitized mice. These results suggest that the immunomodulatory effects of LTS61K may have clinical applications for allergy and asthma treatment.


Asunto(s)
Células Dendríticas/inmunología , Enterotoxinas/inmunología , Escherichia coli/inmunología , Hipersensibilidad Respiratoria/inmunología , Administración Intranasal , Traslado Adoptivo , Alérgenos/administración & dosificación , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/administración & dosificación , Antígenos Dermatofagoides/inmunología , Asma/inmunología , Asma/metabolismo , Citocinas/biosíntesis , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina A Secretora/inmunología , Ratones , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/terapia , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA