Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Environ Pollut ; 358: 124532, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996991

RESUMEN

Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.

2.
Sci Total Environ ; 946: 174027, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38906297

RESUMEN

The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Aprendizaje Automático , Material Particulado , Pez Cebra , Material Particulado/toxicidad , Material Particulado/análisis , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ciudades , China , Embrión no Mamífero/efectos de los fármacos , Monitoreo del Ambiente/métodos
3.
Water Res ; 261: 121983, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38924951

RESUMEN

The migration and dissemination of antibiotics and their corresponding antibiotic resistance genes (ARGs) from pharmaceutical plants through wastewater treatment to the environment introduce exogenous ARGs, increasing the risk of antibiotic resistance. Cephalosporin antibiotics (Ceps) are among the most widely used antibiotics with the largest market scale today, and the issue of resistance is becoming increasingly severe. In this study, a cephalosporin pharmaceutical plant was selected and metagenomic analysis was employed to investigate the dissemination patterns of cephalosporin antibiotics (Ceps) and their ARGs (CepARGs) from the pharmaceutical plant through the wastewater treatment plant to tidal flats sediments. The findings revealed a significant reduction in the total concentration of Ceps by 90.32 % from the pharmaceutical plant's Pioneer Bio Reactor (PBR) to the effluent of the wastewater treatment plant, and a notable surge of 172.13 % in the relative abundance of CepARGs. It was observed that CepARGs originating from the PBR could migrate along the dissemination chain, contributing to 60 % of the CepARGs composition in tidal flats sediments. Microorganisms play a crucial role in the migration of CepARGs, with efflux-mediated CepARGs, as an intrinsic resistance mechanism, exhibiting a higher prospensity for migration due to their presence in multiple hosts. While Class I risk CepARGs are present at the pharmaceutical and wastewater plant stages, Class I ina-CepARGs are completely removed during wastewater treatment and do not migrate to the environment. This study reveals the dynamic migration characteristics and potential risk changes regarding Ceps and CepARGs in real dissemination chains, providing new theoretical evidence for the mitigation, control, and risk prevention of CepARGs.

4.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710144

RESUMEN

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Límite de Detección , Nanopartículas , Técnicas Biosensibles/métodos , Antibacterianos/análisis , Nanopartículas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Roxitromicina/análisis , Roxitromicina/química , Humanos , Contaminantes Químicos del Agua/análisis , Fibroínas/química
5.
Environ Res ; 254: 119155, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754614

RESUMEN

Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.

6.
Chemosphere ; 357: 142099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653398

RESUMEN

Vertical static composting is an efficient and convenient technology for the treatment of food waste. Exploring the impact of oxygen concentration levels on microbial community structure and functional stability is crucial for optimizing ventilation technology. This study set three experimental groups with varying ventilation intensities based on self-made alternating ventilation composting reactor (AL2: 0.2 L kg-1 DM·min-1; AL4: 0.4 L kg-1 DM·min-1; AL6: 0.6 L kg-1 DM·min-1) to explore the optimal alternating ventilation rate. The results showed that the cumulative ammonia emission of AL2 group reduced by 25.13% and 12.59% compared to the AL4 and AL6 groups. The humification degree of the product was 1.18 times and 1.25 times higher than the other two groups. AL2 increased the relative abundance of the core species Saccharomonospora, thereby strengthening microbial interaction. Low-intensity alternating ventilation increased the carbon metabolism levels, especially aerobic_chemoheterotrophy, carbohydrate and lipid metabolism. However, it simultaneously reduced nitrogen metabolism. Structural equation model analysis demonstrated that alternating low-intensity ventilation effectively regulated both microbial diversity (0.81, p < 0.001) and metabolism (0.81, p < 0.001) by shaping the composting environment. This study optimized the intensity of alternating ventilation and revealed the regulatory mechanism of community structure and metabolism. This study provides guidance for achieving efficient and low-consumption composting.


Asunto(s)
Carbono , Compostaje , Carbono/metabolismo , Compostaje/métodos , Alimentos , Interacciones Microbianas , Amoníaco/metabolismo , Nitrógeno/metabolismo , Sustancias Húmicas , Microbiología del Suelo , Suelo/química , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado
7.
Sci Total Environ ; 926: 172115, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569972

RESUMEN

Manure composting in traditional small-scale pig farms leads to the migration and diffusion of antibiotics and antibiotics resistance genes (ARGs) along the chain of transmission to the surrounding environment, increasing the risk of environmental resistance. Understanding the transmission patterns, driving factors, and health risks of ARGs on small-scale pig farms is important for effective control of ARGs transmission. This study was conducted on a small pig farm and its surrounding environment. The cross-media transmission of ARGs and their risks in the farming habitat were investigated using Metagenomic annotation and qPCR quantitative detection. The results indicate that ARGs in farms spread with manure pile-soil-channel sediment-mudflat sediment. Pig farm manure contributed 22.49 % of the mudflat sediment ARGs. Mobile genetic elements mediate the spread of ARGs across different media. Among them, tnpA and IS26 have the highest degree. Transmission of high-risk ARGs sul1 and tetM resulted in a 50 % and 116 % increase in host risk for sediment, respectively. This study provides a basis for farm manure management and control of the ARGs spread.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Porcinos , Granjas , Antibacterianos/farmacología , Estiércol/análisis , Farmacorresistencia Microbiana/genética , Secuencias Repetitivas Esparcidas
8.
Sci Total Environ ; 929: 172636, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653418

RESUMEN

Vegetables capture antibiotic resistance genes (ARGs) from the soil and then pass them on to consumers through the delivery chain and food chain, and are therefore the key node that may increase the risk of human exposure to ARGs. This study investigates the patterns and driving forces behind the transmission of ARGs from soil to vegetables by the commonly planted cash crops in the coastal region of southern China, i.e. broccoli, pumpkin, and broad bean, to investigate. The study used metagenomic data to reveal the microbial and ARGs profiles of various vegetables and the soil they are grown. The results indicate significant differences in the accumulation of ARGs among different vegetables harvested in the same area at the same time frame, and the ARGs accumulation ability of the three vegetables was in the order of broccoli, broad bean, and pumpkin. In addition, broccoli collected the highest number of ARGs in types (n = 14), while pumpkin (n = 13) does not obtain trimethoprim resistance genes and broad beans (n = 10) do not obtain chloramphenicol, fosmidomycin, quinolone, rifamycin, or trimethoprim resistance genes. Host tracking analysis shows a strong positive correlation (|rho| > 0.8, p < 0.05) between enriched ARGs and plant companion microbes. Enrichment analysis of metabolic pathways of companion microbes shows that vegetables exhibit a discernible enrichment of companion microbes, with significant differences among vegetables. This phenomenon is primarily due to the screening of carbohydrate metabolism capabilities among companion microbes and leads varied patterns of ARGs that spread from the soil to vegetables. This offers a novel insight into the intervention of foodborne transmission of ARGs.


Asunto(s)
Farmacorresistencia Microbiana , Microbiología del Suelo , Verduras , China , Farmacorresistencia Microbiana/genética , Antibacterianos , Brassica/microbiología , Brassica/genética
9.
Environ Res ; 250: 118495, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367837

RESUMEN

Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.


Asunto(s)
Hierro , Metano , Metano/metabolismo , Hierro/metabolismo , Archaea/metabolismo
10.
Nat Microbiol ; 9(2): 464-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228857

RESUMEN

Methane-dependent nitrate and nitrite removal in anoxic environments is thought to rely on syntrophy between ANME-2d archaea and bacteria in the genus 'Candidatus Methylomirabilis'. Here we enriched and purified a single Methylomirabilis from paddy soil fed with nitrate and methane, which is capable of coupling methane oxidation to nitrate reduction via nitrite to dinitrogen independently. Isotope labelling showed that this bacterium we name 'Ca. Methylomirabilis sinica' stoichiometrically performed methane-dependent complete nitrate reduction to dinitrogen gas. Multi-omics analyses collectively demonstrated that 'M. sinica' actively expressed a well-established pathway for this process, especially including nitrate reductase Nap. Furthermore, 'M. sinica' exhibited a higher nitrate affinity than most denitrifiers, implying its competitive fitness under oligotrophic nitrogen-limited conditions. Our findings revise the paradigm of methane-dependent denitrification performed by two organisms, and the widespread presence of 'M. sinica' in public databases suggests that the coupling of methane oxidation and complete denitrification in single cells substantially contributes to global methane and nitrogen budgets.


Asunto(s)
Nitratos , Nitritos , Nitritos/metabolismo , Nitratos/metabolismo , Desnitrificación , Metano/metabolismo , Anaerobiosis , Bacterias/metabolismo , Nitrógeno/metabolismo
11.
Bioresour Technol ; 393: 130050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989420

RESUMEN

Traditional unidirectional ventilation often leads to the loss of heat and moisture during composting, disrupting the favorable microenvironment required for aerobic microbes. This study developed a pulse alternating ventilation composting reactor and investigated the effects of alternating ventilation on composting efficiency compared with upward ventilation and downward ventilation. The results demonstrated that alternating ventilation stabilized the moisture content at approximately 60 % while reducing the temperature and oxygen concentration range within the reactor. Moreover, it extended the duration of high-temperature (>50 °C) by 31 % and 75 % compared to other two groups. It improved the microbial cooperation intensity and stimulated the core microbe (Tepidimicrobium). Seed germination index (GI) of the compost was improved (GI = 91.27 %), and the humic acid content was 1.23 times and 1.37 times higher than other two groups. These results showed that alternating ventilation can be used for efficient resource disposal of food waste.


Asunto(s)
Compostaje , Eliminación de Residuos , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado , Alimentos , Temperatura , Oxígeno , Suelo
12.
Environ Sci Technol ; 58(2): 1338-1348, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38157442

RESUMEN

The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.


Asunto(s)
Microbiota , Tetraciclinas , Animales , Humanos , Tetraciclinas/farmacología , Tetraciclinas/análisis , Simulación del Acoplamiento Molecular , Genes Bacterianos , Antibacterianos/farmacología , Suelo/química , Microbiología del Suelo
13.
Nat Commun ; 14(1): 5394, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669961

RESUMEN

Mutualism is commonly observed in nature but not often reported for bacterial communities. Although abiotic stress is thought to promote microbial mutualism, there is a paucity of research in this area. Here, we monitor microbial communities in a quasi-natural composting system, where temperature variation (20 °C-70 °C) is the main abiotic stress. Genomic analyses and culturing experiments provide evidence that temperature selects for slow-growing and stress-tolerant strains (i.e., Thermobifida fusca and Saccharomonospora viridis), and mutualistic interactions emerge between them and the remaining strains through the sharing of cobalamin. Comparison of 3000 bacterial pairings reveals that mutualism is common (~39.1%) and competition is rare (~13.9%) in pairs involving T. fusca and S. viridis. Overall, our work provides insights into how high temperature can favour mutualism and reduce competition at both the community and species levels.


Asunto(s)
Actinomycetales , Compostaje , Simbiosis , Temperatura
14.
Sci Total Environ ; 905: 167162, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730066

RESUMEN

Antibiotic resistance gene (ARG) spread in anthropogenic polluted soils is believed to be accelerated by the incidental inputs of antibiotics via fertilizing and irrigation, and endangering food and human health. However, due to the complex nature of substrates and uncertain microbial responses, the primary drivers of ARG dissemination remain unclear. To address this concern, the effects of antibiotic inputs on soil microbes and antibiotic resistance under simulated natural conditions was investigated in this study. Specifically, four flow-through reactors with gravity flow were established, and the oxytetracycline (OTC) a typical antibiotic in agricultural soils was studied at environmental concentrations (i.e. 0.1, 1 and 10 mg/kg) for 31 days. The vertical distribution and dissipation of OTC were profiled by measuring the residuals in layers over time. Correspondingly, the effects of antibiotic exposure on microbial communities and ARG abundances were studied. The results showed that the average exposure intensity of OTC in different soil layers ranged in 0.03-6.45 mg/kg, and resulted in different dissipation kinetics. In addition, top layer was found to be the main site of OTC reduction, where OTC dissipated at magnitude of 74.0-96.6 %, depending on the initial OTC concentration. OTC migration and dissipation resulted in the shift of community composition to the extent of 0.25-0.33 in terms of Bray-Curtis distance, which partially recovered over time. And the achievement of alternative community compositions was supposed to be largely affected by the microbial interaction. Along with the community changes, a short-term accumulation of resistance genes was detected, while the relative abundance of indicator ARGs, i.e. tetG and mexB, rising up to 10-fold higher than the initial, although eventually decayed. Collective findings of this study indicated that antibiotics at environmental concentrations might trigger extra microbial interactions and thereby reducing the demand for ARGs accumulation. It provided valuable understandings in the risk of antibiotic spillage, especially for the incident exposure at the environmentally relevant concentrations.


Asunto(s)
Microbiota , Oxitetraciclina , Humanos , Genes Bacterianos , Microbiología del Suelo , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Suelo , Estiércol
15.
Bioresour Technol ; 386: 129495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454959

RESUMEN

Anaerobic reactors often underperform compared to expectations. To identify the key factors, an ecological anaerobic reactor (EAR) with vertical partitions was developed and compared to a physical anaerobic reactor (PAR) as the control. It was observed that EAR achieved a much higher organic loading rate (OLR) compared to PAR (>100 vs 45 kg/m3·d). The different vertical distribution characteristics of anaerobic granular sludge could be ascribed to two vertical distribution patterns dominated in EAR and PAR, i.e., ecological and physical distributions. It was revealed that ecological distribution was formed by the habitat selection, resulting in promoted substrate availability and higher OLR. While physical distribution was mainly affected by hydraulic selection via granule settleability, causing declined substrate availability and lower OLR. Consequently, the promoted ecological distribution and weakened hydraulic selection in EAR contributed to its good performance. Overall, these findings could offer novel concepts for the development of reactors towards high performance.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos
16.
Water Res ; 243: 120394, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494745

RESUMEN

It is expected that the quicker domestication of anaerobic ammonia oxidation (anammox) communities and the enhancement of their nitrogen transformation capability can be achieved through targeted regulation of anammox communities. Iron cast a vital role in the growth and metabolism of anammox bacteria. Specific siderophores offer promising prospects for the targeted regulation of anammox communities by facilitating the efficient utilization of iron. Two siderophores-enterobactin and putrebactin-exclusively for Ca. Brocadia and Ca. Kuenenia were developed to specifically regulate anammox communities towards different directions, respectively. Anammox communities in the reactors evoluted targetedly towards Ca. Brocadia-dominated communities and Ca. Kuenenia-dominated communities, respectively, leading to a maximum increase in community nitrogen removal capacity by 84.64±0.55% and 210.26±0.57%, respectively, under different nitrogen concentrations. It was indicated that siderophores could regulate anammox communities by redistributing iron resources in a targeted manner based on the analyses of transcriptome and proteome. This study provides novel insights into the rational selection and utilization of exogenous siderophores as an effective implement to manipulate anammox communities and create communities with high nitrogen removal ability fleetly.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Sideróforos , Desnitrificación , Nitrógeno/metabolismo , Anaerobiosis , Oxidación-Reducción , Reactores Biológicos/microbiología , Hierro , Aguas del Alcantarillado/microbiología
17.
Sci Total Environ ; 899: 165278, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414172

RESUMEN

Anammox community is the core of anammox process. The constancy of the anammox community determines the stability of the anammox process and the ability of withstand environmental impact. Community stability is influenced by the assembly and interaction mode of the community. This study aimed to explore the assembly, interaction mode, and stability of anammox community influenced by two siderophores (enterobactin and putrebactin) specific for Ca. Brocadia and Ca. Kuenenia as produced in our previous research. Siderophores improved the stability of the anammox community, among which vulnerability dropped by 30.02 % and 72.53 % respectively. Enterobactin and putrebactin altered the succession speed and assembly pattern of communities, with a respective increase of 9.77 % and 80.87 % in the deterministic process of anammox community assembly, respectively. Enterobactin and putrebactin reduced the dependence of Ca. Brocadia and Ca. Kuenenia on companion bacteria by 60 items and 27 items respectively. The affinity of different siderophore-Fe with bacterial membrane receptors caused variations in community reconstruction, with Ca. Brocadia and Ca. Kuenenia exhibiting the highest affinity with enterobactin-Fe (-11.4 kcal/mol) and putrebactin-Fe (-9.0 kcal/mol), respectively. This study demonstrated how siderophores can enhance the stability of anammox process by regulating assembly and interaction mode of anammox community, while also revealing the underlying molecular mechanisms.


Asunto(s)
Enterobactina , Sideróforos , Enterobactina/metabolismo , Oxidación Anaeróbica del Amoníaco , Bacterias/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología
18.
Bioresour Technol ; 384: 129319, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315620

RESUMEN

Microbial community is the primary driver causing the greenhouse gas emissions in composting. Thus, regulating the microbial communities is a strategy to reduce them. Here, two different siderophores (enterobactin and putrebactin) were added, which could bind and translocate iron by specific microbes, to regulate the composting communities. The results showed that adding enterobactin enriched Acinetobacter and Bacillus with specific receptors by 6.84-fold and 6.78-fold. It promoted carbohydrate degradation and amino acid metabolism. This resulted in a 1.28-fold increase in humic acid content, as well as a 14.02% and 18.27% decrease in CO2 and CH4 emissions, respectively. Meanwhile, adding putrebactin boosted the microbial diversity by 1.21-fold and enhanced potential microbial interactions by 1.76-fold. The attenuated denitrification process led to a 1.51-fold increase in the total nitrogen content and a 27.47% reduction in N2O emissions. Overall, adding siderophores is an efficient strategy to reduce greenhouse gas emissions and promote the compost quality.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Sideróforos , Enterobactina , Metano/análisis , Nitrógeno/análisis , Suelo/química , Óxido Nitroso/análisis , Dióxido de Carbono/análisis , Estiércol
19.
J Hazard Mater ; 457: 131727, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257383

RESUMEN

Soil environment is a vital place for the occurrence and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Extracellular DNA-mediated transformation is an important pathway for ARGs horizontal transfer and widely exists in soil environment. However, little information is available on how common soil components affect ARGs transformation. Here, three minerals (quartz, kaolinite, and montmorillonite) and three organic matters (humic acid, biochar, and soot) were selected as typical soil components. A small amount in suspension (0.2 g/L) of most soil components (except for quartz and montmorillonite) promoted transformant production by 1.1-1.6 folds. For a high amount (8 g/L), biochar significantly promoted transformant production to 1.5 times, kaolinite exerted a 30 % inhibitory effect. From the perspective of plasmid, biochar induced a higher proportion of supercoiled plasmid than kaolinite; more dissolved organic matter and metal ions facilitated plasmid aggregation under the near-neutral pH, thus promoted transformation. As for the influence of materials on recipient, although biochar and kaolinite both increased reactive oxygen species (ROS) level and membrane permeability, biochar up-regulated more ROS related genes, resulting in intracellular ROS production and up-regulating the expression of carbohydrate metabolism and transformation related genes. While kaolinite inhibited transformation mainly by causing nutrient deficiency.


Asunto(s)
Antibacterianos , Suelo , Antibacterianos/farmacología , Genes Bacterianos , Caolín/farmacología , Especies Reactivas de Oxígeno/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Bentonita/farmacología , Cuarzo/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Plásmidos/genética
20.
Environ Pollut ; 327: 121557, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019265

RESUMEN

The partitioning and migration of antibiotic resistance genes (ARGs) at the interfaces of soil, water, and air play a critical role in the environmental transmission of antibiotic resistance. This study investigated the partitioning and migration of resistant plasmids as representatives of extracellular-ARGs (eARGs) in artificially constructed soil-water-air systems. Additionally, it quantitatively studied the influence of soil pH, clay mineral content, organic matter content, and simulated rainfall on the migration of eARGs via orthogonal experiments. The findings revealed that the sorption equilibrium between eARGs and soil can be attained within 3 h, following the two-compartment first-order kinetic model. The average partition ratio of eARGs in soil, water, and air is 7:2:1, and soil pH and clay mineral content are identified as the main influencing factors. The proportion of eARGs migrating from soil to water and air is 8.05% and 0.52%, respectively. Correlation and significance analyses showed that soil pH has a significant impact on the soil-water and soil-air mobility of eARGs, while clay content affects the percentage of peaks during migration. Moreover, rainfall exerts a noticeable impact on the timing of peaks during migration. This study provided quantitative insights into the proportion of eARGs in soil, water, and air and elucidated the key factors influencing the partitioning and migration of eARGs from the perspectives of the sorption mechanism.


Asunto(s)
Antibacterianos , Agua , Antibacterianos/farmacología , Suelo , Arcilla , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA