Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Chem Sci ; 15(22): 8500-8505, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846400

RESUMEN

The development of short-wavelength nonlinear optical (NLO) materials is indispensable and urgently required for further applications. Halides have been disregarded as potential NLO materials with deep-ultraviolet (DUV) cutoff edges due to their weak second-harmonic generation (SHG) response and poor birefringence. Here, two novel and isostructural halides, KBa3M2F14Cl (M = Zr (KBZFC), Hf (KBHFC)), possess structures that are formed by isolated MF7 monocapped triangular prisms and dissociative K+, Ba2+, and Cl- ions. Compared with reported metal halides that are transparent to the DUV region, KBZFC and KBHFC possess the strongest SHG responses (approximately 1, 0.9 × KH2PO4), which are contributed by the synergistic effect of MF7 (M = Zr, Hf) groups, Ba2+ cations, and Cl- ions. The zero-dimensional structures favour sufficient birefringences (0.12, 0.10 @ 1064 nm) for phase-matchable (PM) behaviours. The discovery of KBZFC and KBHFC showcases the potential of NLO mixed metal halides transparent to the DUV region.

2.
Chem Sci ; 15(21): 8071-8079, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817564

RESUMEN

It is of great difficulty to create a new antimonite with second-harmonic-generation (SHG) intensity larger than 6 times that of KDP. In this study, a polyfluoroantimonite strategy has been proposed to explore fluoroantimonites with large nonlinear optical (NLO) coefficients. Under the cooperation of chemical (highly asymmetric π-conjugated organic amine) and physical (viscous reaction medium ethylene glycol) methods, two novel polyfluoroantimonites, namely, (3PC)2(Sb4F14) and (3AP)2(Sb4F13), have been achieved. Interestingly, these two structures contain two new polyfluoroantimonite groups respectively, an isolated (Sb4F14)2- four-member polyhedral ring and an infinite [Sb4F13]∞- helical chain. More importantly, the polar (3AP)2(Sb4F13) displays a strong SHG intensity of 8.1 × KDP, a large birefringence of 0.258@546 nm and a high laser-induced damage threshold (LIDT) value of 149.7 MW cm-2. Theoretical calculations indicated that its strong SHG effect stems from the synergistic effect of the helical [Sb4F13]∞- polyfluoroantimonite chain and π-conjugated 3AP+ cation, with a contribution ratio of 48.93% and 50.77% respectively. This work provides a new approach for the design and synthesis of high-performance fluoroantimonites.

3.
Chem Sci ; 15(19): 7104-7110, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756790

RESUMEN

Birefringent crystals serve as the core elements of polarizing optical devices. However, the inherent challenge of balancing bandgap and birefringence poses a significant hurdle in designing crystals with excellent overall performance. In this study, we propose a novel approach, namely modification with perfluorinated groups, to achieve dual enhancement of the bandgap and birefringence of selenite materials. We have successfully synthesized the first selenite fluorosilicate, namely, Pb2(SeO3)(SiF6). This compound exhibits a three-dimensional structure composed of two-dimensional lead selenite layers bridged by SiF6 octahedrons. Notably, by introducing a perfluorinated SiF6 group, the bandgap of the lead selenite compound has been expanded to 4.4 eV. Furthermore, Pb2(SeO3)(SiF6) demonstrates a large birefringence (0.161 @ 546 nm), surpassing most of the selenite compounds with a bandgap larger than 4.2 eV. Theoretical calculations suggest that the large birefringence of Pb2(SeO3)(SiF6) can be attributed to the synergistic effects of SeO3, PbO4 and PbO3F4 polyhedrons. Our research not only pioneers a new system for selenite materials, enriching the diversity of selenite structures, but also provides a design methodology for obtaining wide bandgap birefringent selenite.

4.
Chem Sci ; 15(17): 6572-6576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699253

RESUMEN

The key properties of nonlinear optical (NLO) materials highly rely on the quality of functional chromophores (FCs) and their optimized interarrangement in the lattice. Despite the screening of various FCs, significant challenges persist in optimizing their arrangement within specific structures. Generally, FC alignment is achieved by designing negatively charged 2D layers or 3D frameworks, further regulated by templating cations. In this study, a novel 0D adduct NLO material, SbF3·glycine, is reported. Neutrally charged 0D [SbF3C2H5NO2] FCs, comprising [SbF3] pyramids and zwitterionic glycine, are well-aligned in the structure. The alignment is facilitated by the hydrogen bonding, reinforcing a 'head-to-tail' ligation of [SbF3C2H5NO2] FCs. Consequently, the title compound exhibits favorable NLO properties, including a large second-harmonic generation efficiency (3.6 × KDP) and suitable birefringence (cal. 0.057 @ 1064 nm). Additionally, its short absorption cut-off edge (231 nm) positions it as a promising short-wave ultraviolet NLO material. Importantly, the binary SbF3-amino acid system is expected to serve as a new resource for exploring ultraviolet NLO crystals, owing to the abundance of the amino acid family.

5.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605318

RESUMEN

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Asunto(s)
Adipocitos , Genes Homeobox , Animales , Bovinos , Adipocitos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Factores de Transcripción/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Adipogénesis/genética
6.
Inorg Chem ; 63(13): 6067-6074, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489513

RESUMEN

The first examples of alkali metal selenite sulfates, namely, Na8(SeO3)(SO4)3 (1), Na2(H2SeO3)(SO4) (2), and K4(H2SeO3)(HSO4)2(SO4) (3), were successfully synthesized by hydrothermal reactions. Their structures display three different zero-dimensional configurations composed of isolated sulfate tetrahedra and selenite groups separated by alkali metals. Na8(SeO3)(SO4)3 (1) features a noncentrosymmetric structure, while Na2(H2SeO3)(SO4) (2) and K4(H2SeO3)(HSO4)2(SO4) (3) are centrosymmetric. Powder second-harmonic-generation measurements revealed that Na8(SeO3)(SO4)3 (1) shows a phase-matchable SHG intensity about 1.2 times that of KDP. UV-vis-NIR diffuse reflectance spectroscopic analysis indicated that Na8(SeO3)(SO4)3 (1) has a short UV cutoff edge and a large optical band gap, which makes it a possible UV nonlinear optical material. Theoretical calculations revealed that the birefringence of Na8(SeO3)(SO4)3 (1) is 0.041 at 532 nm, which is suitable for phase-matching condition. This work provides a good experimental foundation for the exploration of new UV nonlinear crystals in an alkali metal selenite sulfate system.

7.
J Am Chem Soc ; 146(11): 7868-7874, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457655

RESUMEN

Sulfate crystals are often criticized for their low birefringence. The small anisotropic SO4 group is becoming the biggest bottleneck hindering the application of sulfates in optical functional materials. In this study, we report a new method to significantly enhance the birefringence of sulfates. The title compound increases the birefringence recording of sulfates to 0.542@546 nm, which is significantly larger than that of the commercial birefringent crystal of TiO2 (0.306@546.1 nm). At the infrared wavelength, the birefringence of Hg4(Te2O5)(SO4) can be up to 0.400@1064 nm, which is also much larger than the infrared birefringent crystal of YVO4 (0.209@1064 nm). In addition, it also has a wide transparency range, high thermal stability, and excellent environmental stability, making it a potential birefringent material. Hg4(Te2O5)(SO4) features a novel two-dimensional layered structure composed of [Hg4(Te2O5)]2+ layers separated by isolated (SO4)2- tetrahedra. This compound was designed by introducing a highly selective cation in a tellurite sulfate system. The low valence low coordination cations connect with tellurite groups only, making the sulfate isolated in the structure. The steric repulsive action of the isolated SO4 tetrahedra may regulate the linear and lone pair groups arranged in a way that favors large birefringence. This method can be proven by theoretical calculations. PAWED studies showed that the large birefringence originated from the synergistic effect of (Hg2O2)2-, (Te2O5)2-, and (SO4)2- units, with a contribution ratio of 42.17, 37.92, and 19.88%, respectively. Our work breaks the limitation of low birefringence in sulfates and opens up new possibilities for their application as birefringent crystals.

8.
Inorg Chem ; 63(9): 4011-4016, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363859

RESUMEN

Exploring new material systems is a highly significant task in the field of inorganic chemistry. A new mixed-valent selenium compound, Hg3Se(SeO3)(SO4), was successfully synthesized through in situ reactions. This compound exhibits a novel three-dimensional structure composed of Hg3Se(SO4) layers bridged by SeO3 trigonal pyramids. It is the first structure containing (SeO3)2-, (SO4)2-, and Se2- simultaneously. In addition, Hg3Se(SeO3)(SO4) possesses a wide bandgap (3.5 eV), moderate birefringence (Cal:0.064@546 nm, Exp:0.069@546 nm), a high laser-induced damage threshold (23.35 MW cm-2), and a wide transmittance window (0.28-6.6 µm). Our work demonstrates that mixed-valent (+4, -2) selenite selenide can be potential optical materials for the mid-infrared region.

9.
Mater Horiz ; 11(7): 1704-1709, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270562

RESUMEN

For non-centrosymmetric (NCS) oxides intended for ultraviolet (UV) nonlinear optical (NLO) applications, achieving a wide band gap, large second harmonic generation (SHG) intensity, and sufficient birefringence to satisfy phase matching is a significant challenge due to their inherent incompatibility. To address this issue, this study proposes a strategy called framework-optimized structural transformation. Building upon centrosymmetric (CS) NaGa(SeO3)2 as a foundation, an original UV selenite NLO material, NaLu(SeO3)2, was successfully synthesized. The derived NaLu(SeO3)2 exhibits a balanced comprehensive performance, including a band gap (5.3 eV), an SHG response (2.7 × KDP), a UV cut-off edge (210 nm), a laser-induced damage threshold (LIDT) (151.69 MW cm-2), birefringence (Cal: 0.138@546 nm, Exp: 0.153@546 nm), thermal stability (∼575 °C) and environmental stability. Notably, its SHG effect, band gap, LIDT, and birefringence are all the largest among UV non-hydrogen pure selenite materials. Such progress can be attributed to the successful arrangement of the SeO3 groups by optimizing the cations on the framework of the parent compound.

10.
Small ; 20(5): e2305828, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726242

RESUMEN

The first examples of thioborate-thiosilicates, namely Ca2 Ln(BS3 )(SiS4 ) (Ln = La, Ce, and Gd), are synthesized by rationally designed high-temperature solid-state reactions. They crystalize in the polar space group P63 mc and feature a novel three-dimensional crystal structure in which the discrete [BS3 ]3- and [SiS4 ]4- anionic groups are linked by Ca2+ and Ln3+ cations occupying the same atomic site. Remarkably, all three compounds show comprehensive properties required as promising infrared nonlinear optical materials, including phase-matchable strong second harmonic generation (SHG) responses at 2.05 µm (1.1-1.2 times that of AgGaS2 ), high laser-induced damage thresholds (7-10 times that of AgGaS2 ), wide light transmission range (0.45-11 µm), high thermal stabilities (>800 °C), and large calculated birefringence (0.126-0.149 @1064 nm), which justify the material design strategy of combining [BS3 ]3- and [SiS4 ]4- active units. Theoretical calculations suggest that their large SHG effects originate mainly from the synergy effects of the LnS6 , BS3 , and SiS4 groups. This work not only broadens the scope of research on metal chalcogenides but also provides a new synthetic route for mixed anionic thioborates.

11.
Small ; 20(12): e2307072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940616

RESUMEN

Discovering new deep ultraviolet (DUV) nonlinear optical (NLO) materials is the current research hotspot. However, how to perfectly integrate several stringent performances into a crystal is a great challenge because of the natural incompatibility among them, particularly wide band gap and large NLO coefficient. To tackle the challenge, a boron-rich closed-loop strategy is supposed, based on which a new barium borate, Ba4B14O25, is designed and synthesized successfully via the high-temperature solid-state melting method. It features a highly polymeric 3D geometry with the closed-loop anionic framework [B14O25]8- constructed by the fundamental building blocks [B14O33]24-. The high-density π-conjugated [BO3]3- groups and the fully closed-loop B-O-B connections make Ba4B14O25 possess excellent NLO properties, including short UV cutoff edge (<200 nm), large second harmonic generation response (3.0 × KDP) and phase-matching capability, being a promising DUV-transparent NLO candidate material. The work provides a creative design strategy for the exploration of DUV NLO crystals.

12.
Reprod Domest Anim ; 59(1): e14497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917556

RESUMEN

Milk production traits as the most important economic traits of dairy cows, they directly reflect the benefits of breeding and the economic benefits of pasture. In this study, A disintegrin and metalloproteinase-12 (ADAM12), Parkinson's disease gene 2 (PRKN) and dipeptidyl peptidase-like protein subtype 6 (DPP6) polymorphism in 384 Chinese Holstein cows were detected by time-of-flight mass spectrometry and through statistical analysis using software such as Popgene 32, SAS 9.4 and Origin 2022, the relationship between single nucleotide polymorphisms (SNPs) of three genes with four milk production traits such as daily milk yield (DMY), milk fat percentage (MFP), milk protein percentage (MPP) and somatic cell score (SCS) was verified at molecular level. The results showed that four polymorphic loci (116,467,133, 116,604,487, 116,618,268 and 116,835,111) of DPP6 gene, two polymorphic loci (97,665,052 and 97,159,837) of PRKN gene and two polymorphic loci (45,542,714 and 45,553,888) of ADAM12 gene were detected. PRKN-97665052, DPP6-116467133, ADAM12-45553888, DPP6-116604487 and DPP6-116835111 were all in Hardy-Weinberg equilibrium state (p > .05). ADAM12-45542714, PRKN-97159837 and PRKN-97665052 were moderately polymorphic (0.25 ≤ PIC <0.50) in Holstein. It is evident that the selection potential and genetic variation of these five loci are relatively large, and the genetic richness is relatively high. The correlation analysis of different genotypes between these eight loci and milk production traits of Holstein showed that ADAM12-45542714 and DPP6-116835111 (p < .01) had an extremely significant effects on the DMY of Chinese Holstein in Ningxia, while PRKN-97665052 had an extremely significant effect on MFP (p < .01). The effect of PRKN-97665052 and DPP6-116467133 on MPP of Holstein were extremely significant (p < .01). DPP6-116618268 had an extremely significant effect on the SCS of Holstein in Ningxia (p < .01), and AA genotype individuals showed a higher SCS than GG genotype individuals; the other two loci (ADAM12-45553888 and DPP6-116604487) had no significant effects on milk production traits of Holstein (p > .05). In addition, through the joint analysis of DPP6, PRKN and ADAM12 gene loci, it was found that the interaction effect between the three gene loci could significantly affect the DMY, SCS (p < .01) and MPP (p < .05). In conclusion, several different loci of DPP6, PRKN and ADAM12 genes can affect the milk production traits of Holstein to different degrees. PRKN, DPP6 and ADAM12 genes can be used as potential candidate genes for milk production traits of Holstein for marker-assisted selection, providing theoretical basis for breeding of Holstein.


Asunto(s)
Lactancia , Leche , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Femenino , Humanos , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/análisis , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Genotipo , Lactancia/genética , Leche/química , Proteínas de la Leche , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Canales de Potasio/análisis , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Chem Sci ; 14(48): 14302-14307, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38098716

RESUMEN

Birefringent crystals can manipulate the polarization state of lasers and have vital application in polarizers, optical isolators, phase compensators, etc. The design and synthesis of crystals with large birefringence remains a challenging task. To design crystals with large birefringence, we combine an unprecedented chloroiodate(v) group (IO2Cl2)- featuring large polarizability anisotropy and a strong stereochemically active lone pair (SCALP) with the π-conjugated 2-amino-5-chloropyridine group. The superior synergy effect of (IO2Cl2)- and 2-amino-5-chloropyridine groups produces a new birefringent crystal, namely (C5H6.16N2Cl0.84)(IO2Cl2). It exhibits remarkably large birefringence of 0.67 at 546 nm, far exceeding those of most visible birefringent materials reported. This work discovers the first chloroiodate(v) group and provides a new synthetic route for birefringent materials.

14.
iScience ; 26(11): 108346, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026203

RESUMEN

Intramuscular fat (IMF) refers to the fat that accumulates between muscle bundles or within muscle cells, whose content significantly impacts the taste, tenderness, and flavor of meat products, making it a crucial economic characteristic in livestock production. However, the intricate mechanisms governing IMF deposition, involving non-coding RNAs (ncRNAs), genes, and complex regulatory networks, remain largely enigmatic. Identifying adipose tissue-specific genes and ncRNAs is paramount to unravel these molecular mysteries. This study, conducted on Jiaxian red cattle, harnessed whole transcriptome sequencing to unearth the nuances of circRNAs and miRNAs across seven distinct tissues. The interplay of these ncRNAs was assessed through differential expression analysis and network analysis. These findings are not only pivotal in unveiling the intricacies of fat deposition mechanisms but also lay a robust foundation for future research, setting the stage for enhancing IMF content in Jiaxian red cattle breeding.

15.
J Am Chem Soc ; 145(44): 24416-24424, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37881867

RESUMEN

An unusual O/F ordered d0 transition metal fluoroantimonite, namely, K2SbMoO2F7, has been created by the cationic size effect of alkali metals. It features the largest birefringence of 0.220@550 nm among inorganic antimonites with a halogen element, which is an order of magnitude larger than the disordered A2SbMoO2F7 (A = Rb, Cs). These three new compounds exhibit two different structures, although all of the structures were made of [SbMoO2F7]2- chains formed by SbF5 square pyramids and MoO2F4 octahedrons. A transparent single crystal of K2SbMoO2F7 with dimensions of 7.0 × 5.0 × 1.0 mm3 has been successfully grown by the aqueous solution volatilization method. The UV-vis-MIR transmission spectrum showed that K2SbMoO2F7 can display excellent transmittance in the range of 0.5-5.0 µm and 6.0-9.8 µm, indicating its application potential as a birefringent material in the mid infrared band. This work offers a fresh approach to the design and synthesis of mid infrared birefringent materials.

16.
Adv Sci (Weinh) ; 10(34): e2304463, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870191

RESUMEN

It has historically been exceedingly challenging to create physically and chemically stable lanthanide compounds with strong second harmonic generation (SHG) due to their strong preference to central symmetry. In this work, five new non-centrosymmetric lanthanide selenites, namely, Ln2 F2 (OH2 )(MoO3 )2 (SeO3 )2 (Ln = Sm, Eu, Gd, Tb and Dy), are achieved by partial fluorination of the lanthanide oxygen polyhedron. An HF corrosion resistant supercritical hydrothermal method is developed, which is a facile and universal method for HF corrosion and high-temperature high-pressure environment. The title compounds displayed a novel 3D framework composed of 1D molybdenum selenite chains bridged by Ln2 F2 O12 (OH2 ) dimers. Their powder SHG responses showed a large difference, ranging from 1.0 to 9.0 × KH2 PO4 (KDP) at 1064 nm. The half-filled Gd compound exhibited very strong SHG efficiency of up to 1.2 × KTP (KTiOPO4 ) at 2050 nm. Compounds Tb and Gd are the first lanthanide selenites with SHG intensity reaching KTP level, which is very rare in this system. Furthermore, these compounds can also possess excellent physicochemical stability and strong luminescence emission, indicating that they are promising multifunctional nonlinear optical materials. This work offered an effective way for design and synthesis of multifunctional and high-performant nonlinear optical materials.

17.
Inorg Chem ; 62(37): 15329-15333, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37677152

RESUMEN

Two new mixed-anion cerium iodates, namely, Ce(IO3)3F and Ce(IO3)2(NO3), have been rationally designed through the integration of hybrid anionic functional building blocks (FBBs). The structure of Ce(IO3)3F features a novel [Ce(IO3)3F] bilayer, and the material exhibits large birefringence (0.225 @546 nm). The structure of Ce(IO3)2(NO3) features [Ce3(IO3)6]3+ triple layers that are further linked by planar NO3- units. Ce(IO3)2(NO3) shows a moderate SHG response (1 × KDP) and a high laser-induced damage threshold value (22 × AgGaS2). This work demonstrates that the rich coordination geometries of cerium cations facilitate tuning of the structures of related compounds through modulating anionic FBBs.

18.
Chem Sci ; 14(35): 9533-9542, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37712033

RESUMEN

In this study, we identify a novel class of second-order nonlinear optical (NLO) crystals, non-π-conjugated piperazine (H10C4N2, PIP) metal halides, represented by two centimeter-sized, noncentrosymmetric organic-inorganic metal halides (OIMHs), namely H12C4N2CdI4 (P212121) and H11C4N2CdI3 (Cc). H12C4N2CdI4 is the first to be prepared, and its structure contains a CdI4 tetrahedron, which led to a poor NLO performance, including a weak and non-phase-matchable second harmonic generation (SHG) response of 0.5 × KH2PO4 (KDP), a small birefringence of 0.047 @1064 nm and a narrow bandgap of 3.86 eV. Moreover, H12C4N2CdI4 is regarded as the model compound, and we further obtain H11C4N2CdI3via the replacement of CdI4 with a highly polarizable CdNI3 tetrahedron, which results in a sharp enhancement of SHG response and birefringence. H11C4N2CdI3 exhibits a promising NLO performance including 6 × KDP, 4.10 eV, Δn = 0.074 @1064 nm and phase matchability, indicating that it is the first OIMH to simultaneously exhibit strong SHG response (>5 × KDP) and a wide bandgap (>4.0 eV). Our work presents a novel direction for designing high-performance NLO crystals based on organic-inorganic halides and provides important insights into the role of the hybridized tetrahedron in enhancing the SHG response and birefringence.

19.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628891

RESUMEN

MicroRNAs (miRNAs) are essential regulators of numerous biological processes in animals, including adipogenesis. Despite the abundance of miRNAs associated with adipogenesis, their exact mechanisms of action remain largely unknown. Our study highlights the role of bta-miR-484 as a major regulator of adipocyte proliferation, apoptosis, and differentiation. Here, we demonstrated that the expression of bta-miR-484 initially increased during adipogenesis before decreasing. Overexpression of bta-miR-484 in adipocytes ultimately inhibited cell proliferation and differentiation, reduced the number of EdU fluorescence-stained cells, increased the number of G1 phase cells, reduced the number of G2 and S phase cells, and downregulated the expression of proliferation markers (CDK2 and PCNA) and differentiation markers (CEBPA, FABP4, and LPL). Additionally, overexpression of bta-miR-484 promoted the expression of apoptosis-related genes (Caspase 3, Caspase 9, and BAX), and increased the number of apoptotic cells observed via flow cytometry. In contrast, bta-miR-484 inhibition in adipocytes yielded opposite effects to those observed during bta-miR-484 overexpression. Moreover, luciferase reporter assays confirmed SFRP1 as a target gene of bta-miR-484, and revealed that bta-miR-484 downregulates SFRP1 mRNA expression. These findings offer compelling evidence that bta-miR-484 targets SFRP1, inhibits proliferation and differentiation, and promotes apoptosis. Therefore, these results offer novel insights into the bta-miR-484 regulation of adipocyte growth and development.


Asunto(s)
Apoptosis , Genes cdc , Animales , Diferenciación Celular/genética , Apoptosis/genética , Adipogénesis/genética , Proliferación Celular/genética
20.
Inorg Chem ; 62(32): 12613-12619, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37566101

RESUMEN

Organic-inorganic hybrid nonlinear optical (NLO) materials are highly anticipated because of the integration of both merits of the organic and inorganic moieties. Herein, the 2-pyrimidinone cation (C4H5N2O)+ has been incorporated into the iodate system to form two polymorphic organic-inorganic hybrid iodates, namely, α- and ß-(C4H5N2O)(IO3)·HIO3. They crystallize in different polar space groups (Ia and Pca21), and their structures feature one-dimensional (1D) chain structures composed of (C4H5N2O)+ cations, IO3- anions, and HIO3 molecules interconnected via hydrogen bonds. α- and ß-(C4H5N2O) (IO3)·HIO3 exhibit strong and moderate second-harmonic-generation (SHG) responses of 6.4 and 0.9 × KH2PO4 (KDP), respectively, the same band gaps of 3.65 eV, and high powder laser-induced damage threshold (LIDT) values [51 and 57 × AgGaS2 (AGS)]. The results of theoretical calculations revealed that the large SHG effect of α-(C4H5N2O)(IO3)·HIO3 originated from the IO3 and HIO3 groups. This work indicates that (C4H5N2O)+ is a potential group for designing new NLO materials with brilliant optical performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA