Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672928

RESUMEN

The qualities of precooked foods can be significantly changed by the microorganisms produced during room temperature storage. This work assessed the effects of different antibacterial treatments (CK, without any treatment; microwave treatment, MS; microwave treatment and biological preservatives, MSBP) on the physicochemical properties and microbial communities of precooked crayfish tails during room temperature storage. Only the combination of microwave sterilization and biological preservatives significantly inhibited spoilage, as evidenced by the total viable count (4.15 log CFU/g) after 3 days of room temperature storage, which satisfied the transit time of most logistics companies in China. Changes in pH and TVB-N were also significantly inhibited in the MSBP group compared with those in the CK and MS groups. More than 30 new volatile compounds were produced in the CK groups during room temperature storage. However, in the MSBP groups, the volatile compounds were almost unchanged. The correlations between the microbial composition and volatile compounds suggested that specific bacterial species with metabolic activities related to amino acid, energy, cofactor, and vitamin metabolism, as well as xenobiotics biodegradation and metabolism, were responsible for the changes in volatile compounds. These bacteria included Psychrobacter, Arthrobacter, Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, Dietzia, and Acidovorax. Overall, our findings provide a foundation for the development of strategies to inhibit spoilage in precooked crayfish tails stored at room temperature.

2.
Gene ; 847: 146848, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36096331

RESUMEN

Avian musculoaponeurotic fibrosarcoma (Maf) proteins play an important role in Nrf2/Keap1 signaling pathway, which mainly resist the oxidant stress. The members of sMaf have a high homology basic leucine zipper (bZIP) and lack trans activation domain, and could interact with other transcriptional regulatory factors as a molecular chaperone. In this study, a full-length MafG-like gene was cloned from Procambarus Clarkii, designated as PcMafG-like, which consisted of an ORF length of 246 bp encoding 82 amino acids, a 5' untranslated region (UTR) of 483 bp, and a 3' UTR of 111 bp. The domain of PcMafG-like had a bZIP-Maf domain that binds to DNA. The cDNA sequence of PcMafG-like was 99 % similar to that of Penaeus vannamei. The mRNA of PcMafG-like was expressed in all tested tissues, and the highest expression was in muscle tissue. Under stimulation of Cu2+ and Cd2+, PcMafG-like was significantly up-regulated in hepatopancreas and gill, and the same result was testified by situ hybridization. The representative antioxidant genes, CAT, GPx and CZ-SOD, were significantly induced by Cu2+; CAT and GPx was induced by Cd2+. PcMafG-dsRNA significantly inhibited the expression of these up-regulated genes, but also inhibited the expression of other detected genes CZ-SOD, GST-θ and GST-1like. The antioxidant effect of PcMafG-like was further verified by oxidative stress markers (T-SOD, CuZnSOD, GPx, CAT, GSH and MDA) kits. Cu2+ and Cd2+ could induce the contents of these oxidative stress markers (MDA, GSH, CZ-SOD, CAT in Cu2+/Cd2+ treated group, and GSH-Px in Cd2+ group), while interference of PcMafG-like significantly inhibited the up-regulation. Furthermore, hematoxylin-eosin staining experiments showed that the degree of pathological damage was dose-dependent and time-dependent, and the pathological damage was more serious after dsRNA interfered with PcMafG-like. In addition, subcellular localization showed that PcMafG-like gene existed in nucleus. The recombinant protein PcMafG-like was expressed and purified in prokaryotic expression. The affinity analysis of promoter by agarose gel electrophoresis suggested that PcMafG-like could bind with CAT promoter in vitro. This indicated that PcMafG-like could activate antioxidant genes.


Asunto(s)
Antioxidantes , Contaminantes Químicos del Agua , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Aminoácidos/genética , Animales , Antioxidantes/farmacología , Astacoidea/genética , Cadmio/metabolismo , Cobre/farmacología , ADN Complementario/metabolismo , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Oxidantes/metabolismo , Estrés Oxidativo , Proteínas Recombinantes/genética , Superóxido Dismutasa/genética , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA