Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Carbohydr Polym ; 345: 122584, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227112

RESUMEN

The dissolving pulp preparation from bleached kraft pulp while realizing the high-value application of hemicellulose fraction is of great significance for improving the overall economics of the process. This work proposed a two-step cascaded process of deep eutectic solvent (DES) pretreatment combined with mechanical refining for the co-production of dissolving pulp and arabinoxylan (AX) from bleached bamboo pulp. Results showed that using alkaline DES composed of quaternary ammonium hydroxide and urea prepared high-quality dissolving pulp (α-cellulose content of 97.7 %) while selectively extracting high-quality AX. The mechanical refining rapidly opened up the cellulose structure to increase its Fock reactivity to over 70.0 %. When 100 g bleached bamboo pulp was subjected to this technology route, the high yields of dissolving pulp (63.8 g) and AX (13.0 g) were respectively obtained. It was proposed that the tailored DES with different alkalinity could specifically produce dissolving pulp or AX which were more favorable for downstream application through distinct action pathways. The swelling effects of DES on the cellulose surface facilitated the subsequent mechanical fibrillation, allowing a synergistic enhancement of the reactivity. Thus, the integrated process provided a sustainable alternative for dissolving pulp upgrading while adding attractiveness by co-producing AX product stream.

2.
Angew Chem Int Ed Engl ; : e202410555, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251391

RESUMEN

Lattice-oxygen is highly oxidizable, ideal for electrocatalytic C-H oxidation but insufficient alone for C(O)-C bond cleavage due to the non-removable nature of lattice sites. Here, we present a visible light-assisted electrochemical method of in-situ formulating removable lattice-oxygen sites in a nickel-oxyhydroxide (ESE-NiOOH) electrocatalyst. This catalyst efficiently converts aromatic alcohols and carbonyls with C(O)-C fragments from lignin and plastics into benzoic acids (BAs) with high yields (83-99%). Without light irradiation, ESE-NiOOH's intrinsic lattice-oxygen is non-removable and inert for C(O)-C bond cleavage. In-situ characterizations show light-induced lattice-oxygen removal and regeneration via OH- refilling. Theoretical calculations identify the nucleophilic oxygen attack on ketone-derived carbanion as a rate-determining step, which can be remarkably facilitated by removable lattice-oxygen to activate α-C-H bonds. As a proof-of-concept, an "electrochemical funnel" strategy is developed for high-efficiency upgrading aromatic mixtures with C(O)-C moieties into BA with up to 94% yield. This in-situ removal-regeneration approach for lattice sites opens an avenue for the tailored design of interfacial electrocatalysts to selectively upcycle waste carbon sources into valuable products.

3.
ACS Appl Bio Mater ; 7(9): 5956-5964, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39190068

RESUMEN

Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.


Asunto(s)
Reactores Biológicos , Proliferación Celular , Celulosa , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Celulosa/química , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Tamaño de la Partícula , Ensayo de Materiales , Células Cultivadas , Técnicas de Cultivo de Célula , Módulos de Unión a Carbohidratos
4.
ChemSusChem ; : e202401307, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176998

RESUMEN

Solar-to-hydrogen (STH) is emerging as a promising approach for energy storage and conversion to contribute to carbon neutrality. The lack of efficient catalysts and sustainable reaction systems is stimulating the fast development of photothermal hydrogen production based on floating carriers to achieve unprecedented STH efficiency. This technology involves three major components: floating carriers with hierarchically porous structures, photothermal materials for solar-to-heat conversion and photocatalysts for hydrogen production. Under solar irradiation, the floating photothermal system realizes steam generation which quickly diffuses to the active site for sustainable hydrogen generation with the assistance of a hierarchically porous structure. Additionally, this technology is endowed with advantages in the high utilization of solar energy and catalyst retention, making it suitable for various scenarios, including domestic water supply, wastewater treatment, and desalination. A comprehensive overview of the photothermal hydrogen production system is present due to the economic feasibility for industrial application. The in-depth mechanism of a floating photothermal system, including the solar-to-heat effect, steam diffusion, and triple-phase interaction are highlighted by elucidating the logical relationship among buoyant carriers, photothermal materials, and catalysts for hydrogen production. Finally, the challenges and new opportunities facing current photothermal catalytic hydrogen production systems are analyzed.

5.
Angew Chem Int Ed Engl ; : e202406398, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190831

RESUMEN

As organic semiconductor materials gain increasing prominence in the realm of photocatalysis, two carbon-nitrogen materials, poly (heptazine imide) (PHI) and poly (triazine imide) (PTI), have garnered extensive attention and applications owing to their unique structure properties. This review elaborates on the distinctive physical and chemical features of PHI and PTI, emphasizing their formation mechanisms and the ensuing properties. Furthermore, it elucidates the intricate correlation between the energy band structures and various photocatalytic reactions. Additionally, the review outlines the primary synthetic strategies for constructing PHI and PTI, along with characterization techniques for their identification. It also summarizes the primary strategies for enhancing the photocatalytic performance of PHI and PTI, whose advantages in various photocatalytic applications are discussed. Finally, it highlights the promising prospects and challenges of PHI and PTI as photocatalysts.

6.
Langmuir ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023123

RESUMEN

Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields.

7.
Adv Colloid Interface Sci ; 329: 103176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761603

RESUMEN

Single-atom catalysts (SACs) with active metals dispersed atomically have shown great potential in heterogeneous catalysis due to the high atomic utilization and superior selectivity/stability. Synthesis of SACs using carbon-neutral biomass and its components as the feedstocks provides a promising strategy to realize the sustainable and cost-effective SACs preparation as well as the valorization of underused biomass resources. Herein, we begin by describing the general background and status quo of carbon-based SACs derived from biomass. A detailed enumeration of the common biomass feedstocks (e.g., lignin, cellulose, chitosan, etc.) for the SACs preparation is then offered. The interactions between metal atoms and biomass-derived carbon carriers are summarized to give general rules on how to stabilize the atomic metal centers and rationalize porous carbon structures. Furthermore, the widespread adoption of catalysts in diverse domains (e.g., chemocatalysis, electrocatalysis and photocatalysis, etc.) is comprehensively introduced. The structure-property relationships and the underlying catalytic mechanisms are also addressed, including the influences of metal sites on the activity and stability, and the impact of the unique structure of single-atom centers modulated by metal/biomass feedstocks interactions on catalytic activity and selectivity. Finally, we end this review with a look into the remaining challenges and future perspectives of biomass-based SACs. We expect to shed some light on the forthcoming research of carbon-based SACs derived from biomass, manifestly stimulating the development in this emerging research area.


Asunto(s)
Biomasa , Carbono , Catálisis , Carbono/química , Metales/química
8.
ACS Nano ; 18(21): 13568-13582, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38723039

RESUMEN

Transition metal oxides are promising catalysts for catalytic oxidation reactions but are hampered by low room-temperature activities. Such low activities are normally caused by sparse reactive sites and insufficient capacity for molecular oxygen (O2) activation. Here, we present a dual-stimulation strategy to tackle these two issues. Specifically, we import highly dispersed nickel (Ni) atoms onto MnO2 to enrich its oxygen vacancies (reactive sites). Then, we use molecular ozone (O3) with a lower activation energy as an oxidant instead of molecular O2. With such dual stimulations, the constructed O3-Ni/MnO2 catalytic system shows boosted room-temperature activity for toluene oxidation with a toluene conversion of up to 98%, compared with the O3-MnO2 (Ni-free) system with only 50% conversion and the inactive O2-Ni/MnO2 (O3-free) system. This leap realizes efficient room-temperature catalytic oxidation of transition metal oxides, which is constantly pursued but has always been difficult to truly achieve.

9.
J Colloid Interface Sci ; 659: 520-532, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184994

RESUMEN

The novel composite photocatalytic material perylene diimides/Fe2O3@C (PDIs/Fe2O3@C) was constructed by a simple hydrothermal-calcination method and an oil bath method. 20 % PDIs/Fe2O3@C displayed a 16.4-fold increase in the rate of tetracycline (TC) removal over Fe2O3@C at 8 min. The main factor that enhanced photocatalytic performance was due to the combination of PDIs with Fe2O3@C, which effectively improved the phenomenon during the self-assembly of highly agglomerative PDIs, increased the specific surface area of Fe2O3@C, exposed more reaction sites, and promoted the activation of peroxymonosulfate (PMS) by Fe2+/Fe3+; and secondly, the composite of two different materials, both organic and inorganic, which effectively promoted the photogenerated electron transfer and the separation of electron-hole pairs, the a new S-scheme electron transport pathway is formed, which effectively promoted the photogenerated electron transfer as well as the e--h+ separation, which was more favorable for the activation of PMS. The whole reaction pathway and product toxicity were thoroughly evaluated by Fukui function calculations, Liquid Chromatograph Mass Spectrometer (LC-MS), and Toxicity Estimation Software Tool (T.E.S.T.) simulation results, which demonstrated the rationality of the degradation pathway and the greatly reduced product toxicity. Moreover, the composites were effective and versatile for all other antibiotics (chlortetracycline (CTC), ciprofloxacin (CIP) and sulfadiazine (SDZ)). As an advanced oxidation process, the activation of PDIs/Fe2O3@C under visible light shows its potential application in pollutant degradation, which provides new perspectives and ideas for further effective treatment of real wastewater.


Asunto(s)
Antibacterianos , Peróxidos , Perileno , Antibacterianos/farmacología , Electrones , Luz
10.
Int J Biol Macromol ; 259(Pt 2): 129138, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171445

RESUMEN

Efficient fractionation of lignocellulosic biomass in usable forms of hemicellulose, cellulose and lignin is very important for the sustainable lignocellulosic biorefinery. Herein, poplar sawdust was pretreated with an integrated process composed of acetic acid pre-hydrolysis (170 °C, 60 min) for xylo-oligosaccharides (XOS) production and mild deep eutectic solvent (90-130 °C, 60 min) post-delignification for recovering lignin fractions, resulting in easily hydrolyzed cellulose fraction. Results showed that, after integrated pretreatment and enzymatic hydrolysis, 51 % of xylan and 92 % of glucan in raw biomass could be converted to XOS (DP 2-6) and glucose, respectively, while 71 % of the original lignin could be recovered in DES solvent. The resulting XOS were proven to ensure the growth of probiotics, Bifidobacterium adolescentis. Besides, the lignin macromolecules recovered from DES solvent showed high-purity (around 95 %), low-molecular weight (Mw around 2000), small particle size (270-170 nm) and high-PhOH (3.08 mmol/g) content, which were likely relevant to the excellent antioxidant activity (RSI = 15.16) and adsorbent activity (Pb(II) 461.89 mg/g lignin). Finally, mass balance and energy analysis revealed that the integrated pretreatment could be used as a promising approach for the production of bio-based chemicals and materials from woody biomass.


Asunto(s)
Lignina , Azúcares , Antioxidantes/farmacología , Disolventes Eutécticos Profundos , Ácido Acético , Solventes , Celulosa , Oligosacáridos , Hidrólisis , Biomasa
11.
Small ; 20(2): e2304404, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670529

RESUMEN

Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .

12.
Small ; 20(15): e2304574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009795

RESUMEN

Direct selective transformation of greenhouse methane (CH4) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH4) to methanol using H2O2 as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (NiIII═O) sites and selective C─H bond cleavage to generate •CH3 radicals on Ni centers, which can combine with •OH radicals to generate CH3OH.

13.
ACS Sens ; 9(2): 799-809, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38148619

RESUMEN

This research focuses on developing and validating a wearable electrochemical biosensor called the concatenated aptamer integrated skin patch, also known as the Captain Patch. The main objective is to detect cortisol levels in sweat, which can provide valuable insights into an individual's health. The biosensor utilizes a corrugated surface that mimics the skin, allowing for better attachment and an improved electrochemical performance. The study demonstrates the successful application of Captain Patch on the human body by using artificially spiked sweat samples. The results indicate good measurement accuracy and conformity when the patch is worn on the body. However, for long-term usage, the patch needs to be changed every 3-4 h or worn three times a day to enable monitoring of cortisol levels. Despite the need for frequent patch changes, the cost-effectiveness and ease of operation make these skin patches suitable for longitudinal cortisol monitoring and other sweat analytes. By customization of the biorecognition probe, the developed biowearable can be used to monitor a variety of vital biomarkers. Overall, Captain Patch, with its capability of detecting specific health markers such as cortisol, hints at the future potential of wearables to offer valuable data on various other biomarkers. Our approach presents the first step in integrating a cost-effective wearable electrochemical patch integrated with a redox-concatenated aptamer for noninvasive biomarker detection. This personalized approach to monitoring can lead to improved patient outcomes and increased patient engagement in managing their health.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Hidrocortisona , Técnicas Biosensibles/métodos , Oxidación-Reducción , Biomarcadores
14.
Macromol Biosci ; : e2300376, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031512

RESUMEN

Even with the current advancements in wound management, addressing most skin injuries and wounds continues to pose a significant obstacle for the healthcare industry. As a result, researchers are now focusing on creating innovative materials utilizing cellulose and its derivatives. Cellulose, the most abundant biopolymer in nature, has unique properties that make it a promising material for wound healing, such as biocompatibility, tunable physiochemical characteristics, accessibility, and low cost. 3D bioprinting technology has enabled the production of cellulose-based wound dressings with complex structures that mimic the extracellular matrix. The inclusion of bioactive molecules such as growth factors offers the ability to aid in promoting wound healing, while cellulose creates an ideal environment for controlled release of these biomolecules and moisture retention. The use of 3D bioprinted cellulose-based wound dressings has potential benefits for managing chronic wounds, burns, and painful wounds by promoting wound healing and reducing the risk of infection. This review provides an up-to-date summary of cellulose-based dressings manufactured by 3D bioprinting techniques by looking into wound healing biology, biofabrication methods, cellulose derivatives, and the existing cellulose bioinks targeted toward wound healing.

15.
Chemosphere ; 344: 140287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820879

RESUMEN

In this research, graphitic carbon nitride/zinc oxide-copper denoted as GCN/ZnO-Cu nanocomposite photocatalysts were synthesized using a novel facile synthesis process, the co-exfoliation method involving ultrasonic exfoliation of the mixture of GCN and ZnO-Cu in ethanol and then thermal exfoliation. Different characterization techniques such as X-ray diffraction (XRD), mean crystallite size (MCS), BET surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), particle size distribution (PSD), Fourier transform-infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) were conducted to study the crystallinity, morphology, elemental composition, chemical structure, and optoelectronic properties. The band gap was estimated using the UV-Vis DRS results and Tauc plots. The photocatalytic activity of the GCN/ZnO-Cu3% nanocomposites was evaluated in the degradation of 4-chlorophenol (4-CP), and the disinfection of wastewater primary influent under a narrowband visible light source, royal blue LED (λ = 450 nm). GCN/0.1ZnO-Cu3% nanocomposite showed the best performance in the degradation of 4-CP and the disinfection of municipal wastewater primary influent. For 4-CP degradation, GCN/0.1ZnO-Cu3% was 2.2 times better than GCN, 9.4 times better than ZnO-Cu3%, and 1.8 times better than the sum of the individual GCN and ZnO-Cu3%. A 5.5 log reduction was achieved for the disinfection of total coliforms in wastewater primary influent in 360 min. This enhanced photocatalytic activity of GCN/ZnO-Cu3% nanocomposite can be attributed to the synergistic of GCN and the ZnO-Cu3%, resulting in a large surface area and improved bandgap.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Óxido de Zinc/química , Aguas Residuales , Cobre/química , Espectroscopía Infrarroja por Transformada de Fourier , Desinfección , Luz , Nanocompuestos/química , Catálisis
16.
Chem Soc Rev ; 52(22): 7687-7706, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37877319

RESUMEN

Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.

17.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37765666

RESUMEN

Blood vessels are crucial in the human body, providing essential nutrients to all tissues while facilitating waste removal. As the incidence of cardiovascular disease rises, the demand for efficient treatments increases concurrently. Currently, the predominant interventions for cardiovascular disease are autografts and allografts. Although effective, they present limitations including high costs and inconsistent success rates. Recently, synthetic vascular grafts, made from artificial materials, have emerged as promising alternatives to traditional methods. Among these materials, bacterial cellulose hydrogel exhibits significant potential for tissue engineering applications, particularly in developing nanoscale platforms that regulate cell behavior and promote tissue regeneration, attributed to its notable physicochemical and biocompatible properties. This study reviews recent progress in fabricating engineered vascular grafts using bacterial nanocellulose, demonstrating the efficacy of bacterial cellulose hydrogel as a biomaterial for synthetic vascular grafts, specifically for stimulating angiogenesis and neovascularization.

18.
Bioresour Technol ; 386: 129579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506939

RESUMEN

Mild hydrothermal pretreatment (HP) integrating with solvent extraction is a promising two-step technique to enhance the overall lignin and carbohydrate output for lignocellulose fractionation. This work comparatively assessed the coupling effect between mild HP (the first step) and the emerging acidic choline chloride-natural acid or alkaline choline hydroxide based deep eutectic solvents (DES, the second step) for wheat straw fractionation. It was shown HP with 0.3% p-toluenesulfonic acid (p-TsOH) catalyst achieved a good compromise between complete hemicellulose removal (nearly 100%) and high cellulose recovery (99.2%). While choline hydroxide based DES showed better coupling effect with HP than choline chloride-natural acid DES, corresponding to 75.6 and 31.2% lignin removal respectively. It was proposed that the alkaline DES enhanced lignocellulose swelling the lignin phenolic hydroxyl groups deprotonation and thus facilitating lignin solubilization despite of its condensation at HP. Therefore, the alkaline DES resulting cellulose-rich fraction exhibited higher potential for further processing.


Asunto(s)
Lignina , Triticum , Disolventes Eutécticos Profundos , Solventes , Biomasa , Celulosa , Colina , Catálisis , Hidrólisis
19.
ChemSusChem ; 16(23): e202300675, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37455297

RESUMEN

Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.

20.
Adv Colloid Interface Sci ; 318: 102958, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37453344

RESUMEN

Complex structures and morphologies in nature endow materials with unexpected properties and extraordinary functions. Biotemplating is an emerging strategy for replicating nature structures to obtain materials with unique morphologies and improved properties. Recently, efforts have been made to use bio-inspired species as a template for producing morphology-controllable catalysts. Fundamental information, along with recent advances in biotemplate metal-based catalysts are presented in this review through discussions of various structures and biotemplates employed for catalyst preparation. This review also outlines the recent progress on preparation routes of biotemplate catalysts and discusses how the properties and structures of these templates play a crucial role in the final performance of metal-based catalysts. Additionally, the application of bio-based metal and metal oxide catalysts is highlighted for various key energy and environmental technologies, including photocatalysis, fuel cells, and lithium batteries. Biotemplate metal-based catalysts display high efficiency in several energy and environmental systems. Note that this review provides guidance for further research in this direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA