Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
Front Pharmacol ; 15: 1444169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234112

RESUMEN

Objectives: Olanzapine is used for treating bipolar disorder (BPD); however, the optimal initial dosing regimen is unclear. The present study aimed to investigate the optimal olanzapine initial dosage in patients with BPD via model-informed precision dosing (MIPD) based on a real-world study. Methods: Thirty-nine patients with BPD from the real-world study were collected to construct the MIPD model. Results: Weight, combined used quetiapine influenced olanzapine clearances in patients with BPD, where the clearance rates were 0.152:1 in patients with or without quetiapine under the same weight. We simulated olanzapine doses once a day or twice a day, of which twice a day was optimal. Without quetiapine, for twice-a-day olanzapine doses, 0.80, 0.70, and 0.60 mg/kg/day were suitable for 40- to 56-kg BPD patients, 56- to 74-kg BPD patients, and 74- to 100-kg BPD patients, respectively. With quetiapine, for twice-a-day olanzapine doses, 0.05 mg/kg/day was suitable for 40- to 100-kg BPD patients. Conclusion: This study was the first to investigate the optimal olanzapine initial dosage in patients with BPD via MIPD based on a real-world study, providing clinical reference for the precision medication of olanzapine in BPD patients.

2.
Nat Commun ; 15(1): 8092, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285181

RESUMEN

Both copper (Cu2+/+) and iodine (I-) are essential elements in all living organisms. Increasing the intracellular concentrations of Cu or I ions may efficiently inhibit tumor growth. However, efficient delivery of Cu and I ions into tumor cells is still a challenge, as Cu chelation and iodide salts are highly water-soluble and can release in untargeted tissue. Here we report mitochondria-targeted Cu-I cluster nanoparticles using the reaction of Cu+ and I- to form stable bovine serum albumin (BSA) radiation-induced phosphors (Cu-I@BSA). These solve the stability issues of Cu+ and I- ions. Cu-I@BSA exhibit bright radioluminescence, and easily conjugate with the emission-matched photosensitizer and targeting molecule using functional groups on the surface of BSA. Investigations in vitro and in vivo demonstrate that radioluminescence under low-dose X-ray irradiation excites the conjugated photosensitizer to generate singlet oxygen, and combines with the radiosensitization mechanism of the heavy atom of iodine, resulting in efficient tumor inhibition in female mice. Furthermore, our study reveals that BSA protection causes the biodegradable Cu-I clusters to release free Cu and I ions and induce cell death by modulating mitochondrial function, damaging DNA, disrupting the tricarboxylic acid cycle, decreasing ATP generation, amplifying oxidative stress, and boosting the Bcl-2 pathway.


Asunto(s)
Cobre , Yoduros , Mitocondrias , Albúmina Sérica Bovina , Animales , Cobre/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Femenino , Rayos X , Ratones , Yoduros/química , Yoduros/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Humanos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Ratones Endogámicos BALB C , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
3.
J Cell Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239869

RESUMEN

The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivity to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Lastly, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has modest impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.

4.
Proc Natl Acad Sci U S A ; 121(39): e2316161121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298490

RESUMEN

Uveitis is a vision-threatening disease primarily driven by a dysregulated immune response, with retinal microglia playing a pivotal role in its progression. Although the transcription factor EGR2 is known to be closely associated with uveitis, including Vogt-Koyanagi-Harada disease and Behcet's disease, and is essential for maintaining the dynamic homeostasis of autoimmunity, its exact role in uveitis remains unclear. In this study, diminished EGR2 expression was observed in both retinal microglia from experimental autoimmune uveitis (EAU) mice and inflammation-induced human microglia cell line (HMC3). We constructed a mice model with conditional knockout of EGR2 in microglia and found that EGR2 deficiency resulted in increased intraocular inflammation. Meanwhile, EGR2 overexpression downregulated the expression of inflammatory cytokines as well as cell migration and proliferation in HMC3 cells. Next, RNA sequencing and ChIP-PCR results indicated that EGR2 directly bound to its downstream target growth differentiation factor 15 (GDF15) and further regulated GDF15 transcription. Furthermore, intravitreal injection of GDF15 recombinant protein was shown to ameliorate EAU progression in vivo. Meanwhile, knockdown of GDF15 reversed the phenotype of EGR2 overexpression-induced microglial inflammation in vitro. In summary, this study highlighted the protective role of the transcription factor EGR2 in AU by modulating the microglial phenotype. GFD15 was identified as a downstream target of EGR2, providing a unique target for uveitis treatment.


Asunto(s)
Enfermedades Autoinmunes , Proteína 2 de la Respuesta de Crecimiento Precoz , Factor 15 de Diferenciación de Crecimiento , Microglía , Uveítis , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Microglía/metabolismo , Microglía/patología , Ratones , Uveítis/inmunología , Uveítis/metabolismo , Uveítis/patología , Uveítis/genética , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Retina/metabolismo , Retina/patología , Ratones Noqueados , Modelos Animales de Enfermedad , Línea Celular , Fenotipo , Ratones Endogámicos C57BL
5.
Phytomedicine ; 134: 155982, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244941

RESUMEN

BACKGROUND: Aging-induced decline in ciliary muscle function is an important factor in visual accommodative deficits in elderly adults. With this study, we provide an innovative investigation of the interaction between ciliary muscle aging and oxidative stress. METHODS: Tricolor guinea pigs were used for the experiments in vivo and primary guinea pig ciliary smooth muscle cells were used for the experiments in vitro. RESULTS: We enriched for genes associated with muscle-aging-lutein relationship using bioinformatics, including Nuclear factor-erythroid 2-related factor-2 (Nrf2), Glutathione Peroxidase (GPx) gene family, Superoxide Dismutase (SOD) gene family, NAD(P)H: Quinone Oxidoreductase 1 (NQO1) and Heme Oxygenase-1 (HO-1). After gavage to aged guinea pigs, lutein reduced Reactive Oxygen Species (ROS) and P21 levels in senescent ciliary muscle; lutein decreased refractive error and restored accommodation of the eye. In addition, lutein increased GPx, SOD, and Catalase (CAT) levels in serum; lutein increased GPx and CAT levels in ciliary bodies. Lutein regulated the expression of proteins such as Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and downstream proteins in senescent ciliary bodies. Similarly, guinea pig ciliary muscle cell senescence was associated with oxidative stress. In vitro, 100 µM lutein reversed the damage caused by 800 µM H2O2; it reduced Senescence-Associated ß-galactosidase (SA-ß-Gal) and ROS activites, cell apoptosis and cell migration. Also, lutein increased the expression of smooth muscle contractile proteins. Lutein also increased the expression of Nrf2, GPx2, NQO1 and HO-1, decreased the expression of Keap1. A reduction in Nrf2 activity led to a reduction in the ability of lutein to activate antioxidant enzymes in the cells, thus reducing its inhibitory effect on cell senescence. CONCLUSION: lutein improved resistance to oxidative stress in senescent ciliary muscle in vivo and in vitro by regulating the Keap1/Nrf2/Antioxidant Response Element pathway. We have innovatively demonstrated the molecular pharmacological mechanism by which lutein reverse age-related ciliary muscle systolic and diastolic deficits.

6.
ACS Nano ; 18(36): 24770-24783, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39164631

RESUMEN

Regulating the complex microenvironment after tooth extraction to promote alveolar bone regeneration is a pressing challenge for restorative dentistry. In this study, through modulating the mechanical properties of the cellular matrix, we guided various types of cells by self-organizing to form multicellular spheroids (MCSs) and hybridized MCSs with Prussian Blue nanoparticles (PBNPs) in the process. The constructed Prussian Blue nanohybridized multicellular spheroids (PBNPs@MCSs) with empowered antioxidant functions effectively reduced cell apoptosis under peroxidative conditions and exhibited enhanced ability to regulate the microenvironment and promote bone repair both in vitro and in vivo. In addition, the PBNPs@MCSs exhibited enhanced photoacoustic imaging ability to trace low doses of PBNPs. Therefore, the constructed PBNPs@MCSs based on the biomimetic hydrogel can be used as a form of an engraftment building block, with a greater potential for pro-bone repair application in the complex microenvironment of the oral cavity.


Asunto(s)
Antioxidantes , Regeneración Ósea , Ferrocianuros , Nanopartículas , Técnicas Fotoacústicas , Esferoides Celulares , Ferrocianuros/química , Ferrocianuros/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Esferoides Celulares/efectos de los fármacos , Nanopartículas/química , Ratones , Humanos , Tomografía , Apoptosis/efectos de los fármacos
7.
Respir Med ; 232: 107763, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127085

RESUMEN

BACKGROUND: Post-acute sequelae of COVID-19 (PASC) is incurring a huge health and economic burden worldwide. There is currently no effective treatment or recommended drug for PASC. METHODS: This prospective randomized controlled study was conducted in a hospital in China. The effect of intermittent hypoxia exposure (IHE; 5-min hypoxia alternating with 5-min normal air, repeated five times) on dyspnea and fatigue was investigated in patients meeting the NICE definition of PASC. Patients were computationally randomized to receive normoxia exposure (NE) and routine therapy or IHE and routine therapy. Six-minute walk distance (6MWD) and spirometry were tested before and after the interventions; the Borg Dyspnea Scale (Borg) and the modified Medical Research Council Dyspnea Scale (mMRC) were used to assess dyspnea; and the Fatigue Assessment Scale (FAS) and the Chalder Fatigue Scale-11 (CFQ-11) were used to assess fatigue. The study was registered in the Chinese Clinical Trial Registry (ChiCTR2300070565). FINDINGS: Ninety-five participants (33 males and 62 females) were recruited between March 1, 2023 and December 30, 2023. Forty-seven patients in the IHE group received 10.0 (9.0, 15.0) days of IHE, and 48 patients in NE group received 10.0 (8.0, 12.0) days of NE. 6MWD, forced vital capacity (FVC), FVC %pred, forced expiratory volume in 1 s (FEV1), FEV1 %pred, tidal volume (VT), and dyspnea and fatigue scales markedly improved after IHE (p < 0.05), and improvements were greater than in the NE group (all p < 0.05). Furthermore, participants in IHE group had better subjective improvements in dyspnea and fatigue than those in the NE group (p < 0.05). Compared with <10 days of IHE, ≥10 days of IHE had a greater impact on 6MWD, FVC, FEV1, FEV1 %pred, VT, FAS, and CFQ-11. No severe adverse events were reported. INTERPRETATION: IHE improved spirometry and 6MWD and relieved dyspnea and fatigue in PASC patients. Larger prospective studies are now needed to verify these findings.


Asunto(s)
COVID-19 , Disnea , Fatiga , Hipoxia , Síndrome Post Agudo de COVID-19 , Humanos , Disnea/fisiopatología , Disnea/etiología , Masculino , Femenino , COVID-19/complicaciones , COVID-19/fisiopatología , Fatiga/etiología , Fatiga/fisiopatología , Persona de Mediana Edad , Estudios Prospectivos , Hipoxia/fisiopatología , Adulto , Prueba de Paso/métodos , Anciano , Espirometría/métodos , China
8.
World J Hepatol ; 16(7): 1009-1017, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39086529

RESUMEN

BACKGROUND: Both tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF) are the first-line treatments for chronic hepatitis B (CHB). We have showed switching from TDF to TAF for 96 weeks resulted in further alanine aminotransferase (ALT) improvement, but data remain lacking on the long-term benefits of TDF switching to TAF on hepatic fibrosis. AIM: To assess the benefits of TDF switching to TAF for 3 years on ALT, aspartate aminotransferase (AST), and hepatic fibrosis improvement in patients with CHB. METHODS: A single center retrospective study on 53 patients with CHB who were initially treated with TDF, then switched to TAF to determine dynamic patterns of ALT, AST, AST to platelet ratio index (APRI), fibrosis-4 (FIB-4) scores, and shear wave elastography (SWE) reading improvement at switching week 144, and the associated factors. RESULTS: The mean age was 55 (28-80); 45.3%, males; 15.1%, clinical cirrhosis; mean baseline ALT, 24.8; AST, 25.7 U/L; APRI, 0.37; and FIB-4, 1.66. After 144 weeks TDF switching to TAF, mean ALT and AST were reduced to 19.7 and 21, respectively. From baseline to switching week 144, the rates of ALT and AST < 35 (male)/25 (female) and < 30 (male)/19 (female) were persistently increased; hepatic fibrosis was also improved by APRI < 0.5, from 79.2% to 96.2%; FIB-4 < 1.45, from 52.8% to 58.5%, respectively; mean APRI was reduced to 0.27; FIB-4, to 1.38; and mean SWE reading, from 7.05 to 6.30 kPa after a mean of 109 weeks switching. The renal function was stable and the frequency of patients with glomerular filtration rate > 60 mL/min was increased from 86.5% at baseline to 88.2% at switching week 144. CONCLUSION: Our data confirmed that switching from TDF to TAF for 3 years results in not only persistent ALT/AST improvement, but also hepatic fibrosis improvement by APRI, FIB-4 scores, as well as SWE reading, the important clinical benefits of long-term hepatitis B virus antiviral treatment with TAF.

9.
FASEB J ; 38(15): e23878, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120551

RESUMEN

The ciliary muscle constitutes a crucial element in refractive regulation. Investigating the pathophysiological mechanisms within the ciliary muscle during excessive contraction holds significance in treating ciliary muscle dysfunction. A guinea pig model of excessive contraction of the ciliary muscle induced by drops pilocarpine was employed, alongside the primary ciliary muscle cells was employed in in vitro experiments. The results of the ophthalmic examination showed that pilocarpine did not significantly change refraction and axial length during the experiment, but had adverse effects on the regulatory power of the ciliary muscle. The current data reveal notable alterations in the expression profiles of hypoxia inducible factor 1 (HIF-1α), ATP2A2, P53, α-SMA, Caspase-3, and BAX within the ciliary muscle of animals subjected to pilocarpine exposure, alongside corresponding changes observed in cultured cells treated with pilocarpine. Augmented levels of ROS were detected in both tissue specimens and cells, culminating in a significant increase in cell apoptosis in in vivo and in vitro experiments. Further examination revealed that pilocarpine induced an increase in intracellular Ca2+ levels and disrupted MMP, as evidenced by mitochondrial swelling and diminished cristae density compared to control conditions, concomitant with a noteworthy decline in antioxidant enzyme activity. However, subsequent blockade of Ca2+ channels in cells resulted in downregulation of HIF-1α, ATP2A2, P53, α-SMA, Caspase-3, and BAX expression, alongside ameliorated mitochondrial function and morphology. The inhibition of Ca2+ channels presents a viable approach to mitigate ciliary cells damage and sustain proper ciliary muscle function by curtailing the mitochondrial damage induced by excessive contractions.


Asunto(s)
Apoptosis , Calcio , Senescencia Celular , Pilocarpina , Animales , Pilocarpina/farmacología , Cobayas , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Senescencia Celular/efectos de los fármacos , Cuerpo Ciliar/metabolismo , Masculino , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo
10.
Chem Sci ; 15(30): 11972-11980, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092094

RESUMEN

Harnessing solar energy for hydrogen peroxide (H2O2) production from water and oxygen is crucial for sustainable solar fuel generation. Conjugated microporous polymers (CMPs), with their vast structural versatility and extended π-conjugation, are promising photocatalysts for solar-driven H2O2 generation, though enhancing their efficiency is challenging. Inspired by the crucial role of phenazine derives in biological redox cycling and electron transfer processes, the redox-active phenazine moiety is rationally integrated into a CMP framework (TPE-PNZ). By leveraging the reversible redox dynamics between phenazine and dihydrophenazine, TPE-PNZ sets a new benchmark for H2O2 production among CMP-based photocatalysts, reaching a production rate of 5142 µmol g-1 h-1 and a solar-to-chemical conversion efficiency of 0.58% without requiring sacrificial agents. This interconversion allows for the storage of photogenerated electrons by phenazine and subsequent conversion into dihydrophenazine, which then reduces O2 to H2O2 while reverting to phenazine, markedly facilitating charge transfer and mitigating charge recombination. Experimental and computational investigations further reveal that this reversible process enhances O2 adsorption and reduction, significantly lowering the energy barrier towards H2O2 formation. This study offers critical insights into designing advanced materials for sustainable energy research.

11.
Phys Rev Lett ; 133(4): 045001, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121395

RESUMEN

We propose utilizing a polarization-tailored high-power laser pulse to extract and accelerate electrons from the edge of a solid foil target to produce isolated subfemtosecond electron bunches. The laser pulse consists of two orthogonally polarized components with a time delay comparable to the pulse duration, such that the polarization in the middle of the pulse rapidly rotates over 90° within few optical cycles. Three-dimensional particle-in-cell simulations show that when such a light pulse diffracts at the edge of a plasma foil, a series of isolated relativistic electron bunches are emitted into separated azimuthal angles determined by the varying polarization. In comparison with most other methods that require an ultrashort drive laser, we show the proposed scheme works well with typical multicycle (∼30 fs) pulses from high-power laser facilities. The generated electron bunches have typical durations of a few hundred attoseconds and charges of tens of picocoulombs.

12.
Curr Pharm Des ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39129279

RESUMEN

OBJECTIVE: The method of administering the initial doses of tacrolimus in recipients of pediatric lung transplantation, especially in patients with low hematocrit, is not clear. The present study aims to explore whether weight, CYP3A5 genotype, and voriconazole co-administration influence tacrolimus initial dosage in recipients of pediatric lung transplantation with low hematocrit based on safety and efficacy using a simulation model. METHODS: The present study utilized the tacrolimus population pharmacokinetic model, which was employed in lung transplantation recipients with low hematocrit. RESULTS: For pediatric lung transplantation recipients not carrying CYP3A5*1 and without voriconazole, the recommended tacrolimus doses for weights of 10-13, 13-19, 19-22, 22-35, 35-38, and 38-40 kg are 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients carrying CYP3A5*1 and without voriconazole, the recommended tacrolimus doses for weights of 10-18, 18-30, and 30-40 kg are 0.06, 0.08, 0.11 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients not carrying CYP3A5*1 and with voriconazole, the recommended tacrolimus doses for weights of 10-20 and 20-40 kg are 0.02 and 0.03 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients carrying CYP3A5*1 and with voriconazole, the recommended tacrolimus doses for weights of 10-20, 20-33, and 33-40 kg are 0.03, 0.04, and 0.05 mg/kg/day, which are split into two doses, respectively. CONCLUSION: The present study is the first to recommend the initial dosages of tacrolimus in recipients of pediatric lung transplantation with low hematocrit using a simulation model.

13.
Cancer Nurs ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39190805

RESUMEN

BACKGROUND: Psychosocial adjustment (PSA) in patients exhibits a positive correlation with dyadic coping (DC) and a negative correlation with fear of disease progression (FoP). However, few studies have explored how DC impacts PSA and whether FoP mediates this relationship. OBJECTIVE: To investigate the status of DC, FoP, and PSA in patients with malignancy and their caregivers and to explore the actor-partner and mediating effect of FoP on the association between PSA and DC. METHODS: This study employed a cross-sectional design with convenience sampling to select patients with malignancy and their caregivers from 2 hospitals in China. SPSS and AMOS were used for data analysis. RESULTS: The model showed the mediation effect accounts for 28.30% of the total effect. For the actor effects, patients' and their caregivers' DC influenced their PSA directly (both ß = -.138, P < .05) or through their FoP (ß = -.050 and ß = -.55, both P < .05). As for partner effects, patients' DC influenced the caregivers' PSA directly or through the patients' FoP (ß = -.118 and ß = -.020, both P < .05). Caregivers' DC also influenced patients' PSA directly (ß = -.118, P < .05) or through the patients' or caregivers' FoP (ß = -.098 and ß = -.018, both P < .05). CONCLUSIONS: The model revealed a significant mediating effect of FoP on the association between the PSA and DC of patients with malignancy and their caregivers. IMPLICATIONS FOR PRACTICE: Nurses should adopt a comprehensive perspective that includes caregivers in holistic care to improve their PSA by improving their level of DC or mitigating FoP.

14.
BMC Cancer ; 24(1): 1041, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174903

RESUMEN

BACKGROUND AND PURPOSE: Ir192 vaginal brachytherapy (IBT) is commonly used for patients with postoperative endometrial cancer (EC). We devised a novel multichannel vaginal applicator that could be equipped with an electronic brachytherapy (EBT) device. We aimed to explore the differences in physical parameters between the EBT and IBT. MATERIALS AND METHODS: This retrospective study included 20 EC patients who received adjuvant IBT from March 1, 2023, to May 1, 2023. Multichannel vaginal cylinders were used, and three-dimensional plans were generated. We designed an electronic multichannel vaginal applicator model and simulated a three-dimensional EBT plan. In order to ensure comparability, D90 of the CTV for the EBT plan was normalized to be equivalent to that of the IBT plan for the same patient. RESULTS: Twenty EBT plans were compared with 20 IBT plans. Results showed, the mean D90 value of clinical target volume (CTV) was 536.1 cGy for both treatment plans. For the mean dose of CTV, the EBT was significantly greater (738.3 vs. 684.3 cGy, p = 0.000). There was no significant difference in CTV coverage between the EBT and IBT plans. For high-dose areas (V200% and V150%), the EBTs were significantly greater. There were no significant differences in the maximum doses to the vaginal mucosa between the EBT and IBT, whether at the apex or in the middle segment. For the bladder and rectum, both the low-dose area and high-dose area were significantly lower in the EBT plans. For the conformity index, there was no significant difference between the EBT and IBT plans. For the dose homogeneity index, the EBT value was lower. CONCLUSION: In conclusion, under the premise of a three-dimensional brachytherapy plan, for patients receiving multichannel vaginal applicator brachytherapy, compared with IBT, EBT could reduce the dose to the surrounding organs at risk while maintaining the dose in the target area.


Asunto(s)
Braquiterapia , Neoplasias Endometriales , Radioisótopos de Iridio , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Femenino , Braquiterapia/métodos , Braquiterapia/instrumentación , Neoplasias Endometriales/radioterapia , Neoplasias Endometriales/patología , Estudios Retrospectivos , Radioisótopos de Iridio/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Persona de Mediana Edad , Anciano , Radiometría , Órganos en Riesgo/efectos de la radiación
15.
Bioorg Med Chem ; 111: 117843, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39083980

RESUMEN

This study reported the design and synthesis of novel 1-amido-2-one-4-thio-deoxypyranose as inhibitors of potential drug target TRIP13 for developing new mechanism-based therapeutic agents in the treatment of multiple myeloma (MM). In comparison with the positive control DCZ0415, the most active compounds C16, C18, C20 and C32 exhibited strong anti-proliferative activity against human MM cell lines (ARP-1 and NCI-H929) with IC50 values of 1 âˆ¼ 2 µM. While the surface plasmon resonance (SPR) and ATPase activity assays demonstrated that the representative compound C20 is a potent inhibitor of TRIP13, C20 also showed good antitumor activity in vivo on BALB/c nude mice xenografted with MM tumor cells. An initial structure-activity study showed that the carbonyl group is crucial for anticancer activity. Overall, this study provided novel 1-amido-2-one-4-thio-deoxypyranoses, which are entirely different from previously reported potent inhibitor structures of TRIP13, and thus would aid the development of carbohydrate-based novel agents in MM pharmacotherapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Animales , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Relación Estructura-Actividad , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Tanquirasas
16.
Ecotoxicol Environ Saf ; 283: 116748, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059342

RESUMEN

Organophosphorus flame retardants (PFRs) are a class of flame retardants and environmental pollutants with various biological effects. Recentstudies have evidenced activation of some PFRs by human CYP enzymes (including CYP2E1) for genotoxic effects. However, the activity of CYPs in fish species toward PFR metabolism remains unclear. This study was aimed on comparing the metabolism of triphenyl phosphate (TPHP) and 4-OH-TPHP in human, rat, and common carp, and the involvement of human CYP2E1 and its orthologs in the metabolism, by using fomepizole (4-MP, CYP2E1 inhibitor) as a modulator, in silico molecular docking and dynamics analyses. The rate of TPHP metabolism was apparently faster with human and rat, microsomes than with fish microsomes, the major metabolites were phosphodiester and hydroxylated phosphate, with 30-80 % of TPHP forming unidentified metabolites in the system of each species. 4-OH-TPHP was readily metabolized by both human and rat microsomes, whereas it was hardly metabolized in carp assays. Meanwhile, with 4-MP the transformation of TPHP to 4-OH-TPHP was enhanced in the human/rat systems while suppressed in the carp system. Moreover, the formation of unidentified metabolites in human and rat systems was mostly inhibited by 4-MP. Through molecular dynamics analysis TPHP and its primary metabolites showed high affinity for human and rat CYP2E1, as well as the carp ortholog (CYP2G1-like enzyme), however, the 4-OH-TPHP bond to the latter was too far from the heme to permit a biochemical reaction. This study suggests that the metabolism/activation of TPHP might be favored in mammals rather than carp, a fish species.


Asunto(s)
Carpas , Citocromo P-450 CYP2E1 , Retardadores de Llama , Simulación del Acoplamiento Molecular , Organofosfatos , Animales , Carpas/metabolismo , Humanos , Ratas , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Hidroxilación , Organofosfatos/metabolismo , Organofosfatos/toxicidad , Especificidad de la Especie , Microsomas Hepáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071409

RESUMEN

The human parasite Toxoplasma gondii has a distinctive body plan with a well-defined polarity. In the apical complex, the minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity axis is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex in nascent daughters using expansion microscopy. We found that different substructures in the apical polar ring have different sensitivity to stress. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the construction of the daughter framework progresses towards the centrioles, the apical and the basal arcs co-develop in striking synchrony ahead of the microtubule array, and close into a ring-form before all the microtubules are nucleated. We also found that two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of each protein individually has modest to no impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.

18.
Acta Biomater ; 185: 350-360, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39013485

RESUMEN

5-Fluorouracil has demonstrated certain efficiency in patients with colorectal cancer. However, significant side effects of use by injection are common. To address this issue defects, a reengineered 5'-deoxy-5-fluorocytidine (DFCR) based drug delivery system (POACa) is developed as a prominent tumor-selective nano-activator. Investigations demonstrate that the constructed nano-activator exhibits good biocompatibility and high therapeutic efficiency in mice with subcutaneous and orthotopic SW-480 colorectal tumors, as its activity is strictly dependent on the tumor-associated acid environment and thymidine phosphorylase. These strategies diminish the off-target toxicity and improve the specificity and sensitivity of human colorectal cancer cells to 5-Fu, obtaining potent efficiency by the combination of H2O2 mediated oxidative stress, calcium overload and 5-Fu-induced chemotherapy (the combination index is 0.11). Overall, the engineered nano-activator exhibits a high therapeutic index in vitro and in vivo. STATEMENT OF SIGNIFICANCE: In this study, we designed and prepared a pH-responsive polymer to synchronously deliver DFCR (5'-deoxy-5-fluorocytidine, a prodrug of 5-Fu), Ca2+ and H2O2. The constructed nano-activator was denoted as POACa. (1) To address the problem of premature leakage of cargo by physical embedding, our research modified the inactive prodrug DFCR through chemical bonding. (2) The activation of the prepared nano-activator was strictly dependent on the tumor-associated acid environment and thymidine phosphorylase, providing the drug delivery system with inherent safety. (3) A distinctly low combination index value (0.11) of CaO2 and DFCR indicated that POACa has a prominent tumor suppression effect by tumor calcium overload sensitized chemotherapy and H2O2 mediated cytotoxicity.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Profármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/química , Profármacos/farmacología , Profármacos/química , Animales , Humanos , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Concentración de Iones de Hidrógeno , Sinergismo Farmacológico
19.
J Control Release ; 373: 293-305, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019088

RESUMEN

Myopia represents a widespread global public health concern influenced by a combination of environmental and genetic factors. The prevailing theory explaining myopia development revolves around scleral extracellular matrix (ECM) remodeling, characterized by diminished Type I collagen (Col-1) synthesis and increased degradation, resulting in scleral thinning and eye axis elongation. Existing studies underscore the pivotal role of scleral hypoxia in myopic scleral remodeling. This study investigates the peroxidase-like activity and catalytic performance of octahedral Palladium (Pd) nanocrystals, recognized as nanozymes with antioxidative properties. We explore their potential in reducing oxidative stress and alleviating hypoxia in human scleral fibroblasts (HSF) and examine the associated molecular mechanisms. Our results demonstrate the significant peroxidase-like activity of Pd nanocrystals. Furthermore, we observe a substantial reduction in oxidative stress in HSF under hypoxia, mitigating cellular damage. These effects are linked to alterations in Nrf-2/Ho-1 expression, a pathway associated with hypoxic stress. Importantly, our findings indicate that Pd nanocrystals contribute to attenuated scleral matrix remodeling in myopic guinea pigs, effectively slowing myopia progression. This supports the hypothesis that Pd nanocrystals regulate myopia development by controlling oxidative stress associated with hypoxia. Based on these results, we propose that Pd nanocrystals represent a novel and potential treatment avenue for myopia through the modulation of scleral matrix remodeling. This study introduces innovative ideas and directions for the treatment and prevention of myopia.


Asunto(s)
Matriz Extracelular , Hemo-Oxigenasa 1 , Miopía , Factor 2 Relacionado con NF-E2 , Nanopartículas , Paladio , Esclerótica , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Esclerótica/metabolismo , Humanos , Paladio/química , Nanopartículas/química , Nanopartículas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Miopía/metabolismo , Hemo-Oxigenasa 1/metabolismo , Cobayas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Masculino , Hipoxia/metabolismo , Progresión de la Enfermedad , Células Cultivadas
20.
Curr Pharm Des ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38984572

RESUMEN

BACKGROUND: Due to the narrow therapeutic window and large pharmacokinetic variation of valproic acid (VPA), it is difficult to make an optimal dosage regimen. The present study aims to optimize the initial dosage of VPA in patients with bipolar disorder. METHODS: A total of 126 patients with bipolar disorder treated by VPA were included to construct the VPA population pharmacokinetic model retrospectively. Sex differences and combined use of clozapine were found to significantly affect VPA clearance in patients with bipolar disorder. The initial dosage of VPA was further optimized in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. RESULTS: The CL/F and V/F of VPA in patients with bipolar disorder were 11.3 L/h and 36.4 L, respectively. It was found that sex differences and combined use of clozapine significantly affected VPA clearance in patients with bipolar disorder. At the same weight, the VPA clearance rates were 1.134, 1, 1.276884, and 1.126 in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. This study further optimized the initial dosage of VPA in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. CONCLUSION: This study is the first to investigate the initial dosage optimization of VPA in patients with bipolar disorder based on sex differences and the combined use of clozapine. Male patients had higher clearance, and the recommended initial dose decreased with increasing weight, providing a reference for the precision drug use of VPA in clinical patients with bipolar disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA