Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 252(Pt B): 1491-1499, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31265960

RESUMEN

Understanding the influence of colloids on radionuclide migration is of significance to evaluate environmental risks for radioactive waste disposals. In order to formulate an appropriate modelling framework that can quantify and interpret the anomalous transport of Strontium (Sr) in the absence and presence of colloids, the continuous time random walk (CTRW) approach is implemented in this work using available experimental information. The results show that the transport of Sr and its recovery are enhanced in the presence of colloids. The causes can be largely attributed to the trap-release processes, e.g. electrostatic interactions of Sr, colloids and natural sediments, and differences in pore structures, which gave rise to the varying interstitial velocities of dissolved and, if any, colloid-associated Sr. Good agreement between the CTRW simulations and the column-scale observations is demonstrated. Regardless of the presence of colloids, the CTRW modelling captures the characteristics of non-Fickian anomalous transport (0 < ß < 2) of Sr. In particular, a range of 0 < ß < 1, corresponding to the cases with greater recoveries, reveal strongly non-Fickian transport with distinctive earlier arrivals and tailing effects, likely due to the physicochemical heterogeneities, i.e. the repulsive interactions and/or the macro-pores originating from local heterogeneities. The results imply that colloids can increase the Sr transport as a barrier of Sr sorption onto sediments herein, apart from often being carriers of sored radionuclides in aqueous phase. From a modelling perspective, the findings show that the established CTRW model is valid for quantifying the non-Fickian and promoted transport of Sr with colloids.


Asunto(s)
Coloides/química , Residuos Radiactivos/análisis , Eliminación de Residuos/métodos , Contaminantes Radiactivos del Suelo/análisis , Estroncio/análisis , Contaminantes Radiactivos del Agua/análisis , Radioisótopos/análisis
2.
Ground Water ; 46(4): 642-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18331328

RESUMEN

Concurrent existence of confined and unconfined zones of an aquifer can arise owing to ground water withdrawal by pumping. Using Girinskii's potential function, Chen (1974, 1983) developed an approximate analytical solution to analyze transient ground water flow to a pumping well in an aquifer that changes from an initially confined system to a system with both unconfined and confined regimes. This article presents the details of the Chen model and then compares it with the analytical model developed by Moench and Prickett (1972) for the same problem. Hypothetical pumping test examples in which the aquifer undergoes conversion from confined to water table conditions are solved by the two analytical models and also a numerical model based on MODFLOW. Comparison of the results suggests that the solutions of the Chen model give better results than the Moench and Prickett model except when the radial distance is very large or aquifer thickness is large compared with drawdown.


Asunto(s)
Agua , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA