Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Neurosci Bull ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39395911

RESUMEN

Conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins leads to the accumulation of 5hmC in the central nervous system; however, the role of 5hmC in the postnatal brain and how its levels and target genes are regulated by TETs remain elusive. We have generated mice that lack all three Tet genes specifically in postnatal excitatory neurons. These mice exhibit significantly reduced 5hmC levels, altered dendritic spine morphology within brain regions crucial for cognition, and substantially impaired spatial and associative memories. Transcriptome profiling combined with epigenetic mapping reveals that a subset of genes, which display changes in both 5hmC/5mC levels and expression patterns, are involved in synapse-related functions. Our findings provide insight into the role of postnatally accumulated 5hmC in the mouse brain and underscore the impact of 5hmC modification on the expression of genes essential for synapse development and function.

2.
Front Cell Infect Microbiol ; 14: 1369192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185088

RESUMEN

Objective: This study aimed to explore the correlation between microbiota dysbiosis and hypothyroidism in early pregnancy by 16S rRNA amplicon sequencing combined with metagenomic sequencing. Methods: Sixty pregnant women (30 with hypothyroidism and 30 normal controls) were recruited for 16S rRNA amplicon sequencing, and 6 patients from each group were randomly selected for metagenomic sequencing to assess the gut microbiome profile. Results: The 16S rRNA results showed that beta-diversity in the hypothyroidism group was decreased. The relative abundances of the Prevotella and Paraprevotella genera increased in the hypothyroidism group, and Blautia predominated in the controls. The metagenomics results revealed that Prevotella_stercorea_CAG_629, Prevotella_hominis, Prevotella_sp_AM34_19LB, etc. were enriched in the hypothyroidism group at the species level. Functional analysis revealed that the pyridoxal 5'-phosphate synthase pdxT subunit module was decreased, and the short-chain fatty acid (SCFA) transporter and phospholipase/carboxylesterase modules were strongly enriched in the hypothyroidism group. Hypothyroidism patients had increased C-reactive protein (CRP), interleukin-2 (IL-2), IL-4, IL-10, and tumor necrosis factor (TNF)-α levels. The pyridoxal 5'-phosphate synthase pdxT subunit, the SCFA transporter, and the phospholipase/carboxylesterase module were associated with different Prevotella species. Conclusion: In early pregnancy, women with hypothyroidism exhibit microbiota dysbiosis, and Prevotella may affect the metabolism of glutamate, SCFA, and phospholipases, which could be involved in the development of hypothyroidism during pregnancy.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Hipotiroidismo , Metagenómica , ARN Ribosómico 16S , Humanos , Femenino , Embarazo , Hipotiroidismo/microbiología , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Adulto , Disbiosis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Complicaciones del Embarazo/microbiología , Metagenoma , Heces/microbiología
3.
Sci Total Environ ; 949: 175235, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102947

RESUMEN

Wastewater-based epidemiology (WBE) has emerged as a promising tool for monitoring the spread of COVID-19, as SARS-CoV-2 can be shed in the faeces of infected individuals, even in the absence of symptoms. This study aimed to optimize a prediction model for estimating COVID-19 infection rates based on SARS-CoV-2 RNA concentrations in wastewater, and reveal the infection trends and variant diversification in Shenzhen, China following the lifting of a strict COVID-19 strategy. Faecal samples (n = 4337) from 1204 SARS-CoV-2 infected individuals hospitalized in a designated hospital were analysed to obtain Omicron variant-specific faecal shedding dynamics. Wastewater samples from 6 wastewater treatment plants (WWTPs) and 9 pump stations, covering 3.55 million people, were monitored for SARS-CoV-2 RNA concentrations and variant abundance. We found that the viral load in wastewater increased rapidly in December 2022 in the two districts, demonstrating a sharp peak in COVID-19 infections in late-December 2022, mainly caused by Omicron subvariants BA.5.2.48 and BF.7.14. The prediction model, based on the mass balance between total viral load in wastewater and individual faecal viral shedding, revealed a surge in the cumulative infection rate from <0.1 % to over 70 % within three weeks after the strict COVID-19 strategy was lifted. Additionally, 39 cryptic SARS-CoV-2 variants were identified in wastewater, in addition to those detected through clinical surveillance. These findings demonstrate the effectiveness of WBE in providing comprehensive and efficient assessments of COVID-19 infection rates and identifying cryptic variants, highlighting its potential for monitoring emerging pathogens with faecal shedding.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , COVID-19/epidemiología , China/epidemiología , Aguas Residuales/virología , Humanos , Heces/virología , Betacoronavirus , Pandemias , Monitoreo Epidemiológico Basado en Aguas Residuales , ARN Viral/análisis , Esparcimiento de Virus , Carga Viral
4.
J Microbiol ; 62(9): 727-737, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38967744

RESUMEN

Two bacterial strains (XCT-34T and XCT-53) isolated from sediment samples of an artificial freshwater reservoir were analyzed using a polyphasic approach. The two isolates are aerobic, Gram-stain-negative, oxidase-negative, catalase-positive, motile with polar flagella, rod-shaped, and approximately 1.4-3.4 × 0.4-0.9 µm in size. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences showed that the two strains formed a distinct branch within the evolutionary radiation of the genus Pannonibacter, closest to Pannonibacter carbonis Q4.6T (KCTC 52466). Furthermore, lower than threshold average nucleotide identity values (ANI, 85.7-86.4%) and digital DNA-DNA hybridization values (dDDH, 22.3-30.5%) of the two strains compared to the nearest type strains also confirmed that they represented a novel species. Genomic analyses, including annotation of the KEGG pathways, prediction of the secondary metabolism biosynthetic gene clusters and PHI phenotypes, supported functional inference and differentiation of the strains from the closely related taxa. Results of chemotaxonomic and physiological studies revealed that their distinct phenotypic characteristics distinguished them from existing Pannonibacter species. Thus, the two strains are considered to represent a novel species of Pannonibacter, for which the name of Pannonibacter tanglangensis sp. nov. is proposed, with XCT-34T (= KCTC 82332T = GDMCC 1.1947T) as the respective type strain.


Asunto(s)
ADN Bacteriano , Sedimentos Geológicos , Filogenia , Estanques , ARN Ribosómico 16S , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Estanques/microbiología , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico , Genoma Bacteriano , Ácidos Grasos/análisis , Análisis de Secuencia de ADN , Composición de Base
5.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604960

RESUMEN

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Quinolonas , Humanos , Kentucky , Filogenia , Salmonella , Antibacterianos/farmacología , Plásmidos/genética , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética
6.
Lipids Health Dis ; 23(1): 101, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600581

RESUMEN

BACKGROUND: The objective was to investigate the efficacy of different doses of levothyroxine therapy among pregnant women exhibiting high-normal thyroid stimulating hormone levels and positive thyroid peroxidase antibodies throughout the first half of pregnancy. METHODS: Pregnant women exhibiting high-normal thyroid stimulating hormone levels and thyroid peroxidase antibodies positivity throughout the initial half of pregnancy were selected from January 2021 to September 2023. Based on the different doses of levothyroxine, the pregnant women were categorized into the nonintervention group (G0, 122 women), 25 µg levothyroxine intervention group (G25, 69 women), and 50 µg levothyroxine intervention group (G50, 58 women). Serum parameters, gastrointestinal symptoms, small intestinal bacterial overgrowth (SIBO), maternal and neonatal outcomes were compared after the intervention among the three groups. RESULTS: After the intervention, in the G25 and G50 groups, the thyroid stimulating hormone, triglyceride and low-density lipoprotein levels were notably less in contrast to those in the G0 group (P < 0.05). The rates of abdominal distension and SIBO in the G25 and G50 groups were notably lower in contrast to the G0 group (P = 0.043 and 0.040, respectively). The G50 group had a lower rate of spontaneous abortion and premature membrane rupture than the G0 group (P = 0.01 and 0.015, respectively). Before 11+ 2 weeks of gestation and at thyroid peroxidase antibodies levels ≥ 117 IU/mL, in contrast to the G0 group, the G50 group experienced a decreased rate of spontaneous abortion (P = 0.008). The G50 group had significantly higher newborn weight than the G0 group (P = 0.014), as well as a notably longer newborn length than the G0 and G25 groups (P = 0.005). CONCLUSIONS: For pregnant women with high-normal thyroid stimulating hormone levels and thyroid peroxidase antibodies positive during the first half of pregnancy, supplementation with 50 µg levothyroxine was more effective in improving their blood lipid status and gastrointestinal symptoms, reducing the incidence of SIBO and premature rupture of membranes, and before 11+2 weeks, TPOAb ≥ 117 IU/mL proved more beneficial in mitigating the risk of spontaneous abortion.


Asunto(s)
Aborto Espontáneo , Tiroxina , Recién Nacido , Femenino , Embarazo , Humanos , Tiroxina/uso terapéutico , Mujeres Embarazadas , Yoduro Peroxidasa , Autoanticuerpos , Tirotropina
7.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456949

RESUMEN

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Asunto(s)
Isquemia Encefálica , Sumoilación , Humanos , Quinasas Quinasa Quinasa PAM/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Transducción de Señal/fisiología , Isquemia Encefálica/metabolismo , Cognición , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo
8.
Funct Integr Genomics ; 24(2): 66, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526630

RESUMEN

Transcription initiates the formation of single-stranded DNA (ssDNA) regions within the genome, delineating transcription bubbles, a highly dynamic genomic process. Kethoxal-assisted single-stranded DNA sequencing (KAS-seq) utilizing N3-kethoxal has emerged as a potent tool for mapping specific guanine positions in ssDNA on a genome-wide scale. However, the original KAS-seq method required the costly Accel-NGS Methyl-seq DNA library kit. This study introduces an optimized iteration of the KAS-seq technique, referred to as adapter-tagged KAS-seq (atKAS-seq), incorporating an adapter tagging strategy. This modification involves integrating sequencing adapters via complementary strand synthesis using random N9 tagging. Additionally, by harnessing the potential of ascorbic acid (ASC), recognized for inducing global epigenetic changes, we employed the atKAS-seq methodology to elucidate critical pathways influenced by short-term, high-dose ASC treatment. Our findings underscore that atKAS-seq enables rapid and precise analyses of transcription dynamics and enhancer activities concurrently. This method offers a streamlined, cost-efficient, and low-input approach, affirming its utility in probing intricate genomic regulatory mechanisms.


Asunto(s)
Ácido Ascórbico , ADN de Cadena Simple , Ácido Ascórbico/farmacología , Butanonas , Secuencias Reguladoras de Ácidos Nucleicos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Circulation ; 149(24): 1903-1920, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38357802

RESUMEN

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Macrófagos , Septinas , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP rac1 , Animales , Humanos , Masculino , Ratones , Angiotensina II/metabolismo , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Aneurisma de la Aorta/genética , Disección Aórtica/metabolismo , Disección Aórtica/patología , Disección Aórtica/genética , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Neuropéptidos , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Septinas/metabolismo , Septinas/genética , Transducción de Señal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
10.
ACS Chem Biol ; 19(1): 129-140, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38100359

RESUMEN

Ascorbic acid (ASC) has been reported to stimulate DNA iterative oxidase ten-eleven translocation (TET) enzymes, Jumonji C-domain-containing histone demethylases, and potentially RNA m6A demethylases FTO and ALKBH5 as a cofactor. Although ascorbic acid has been widely investigated in reprogramming DNA and histone methylation status in vitro, in cultured cells and mouse models, its specific role in the catalytic cycle of dioxygenases remains enigmatic. Here, we systematically investigated the stimulation of ASC toward TET2, ALKBH3, histone demethylases, and FTO. We find that ASC reprograms epitranscriptome by erasing the hypermethylated m6A sites in mRNA. Biochemistry and electron spin resonance assays demonstrate that ASC enters the active pocket of dioxygenases and reduces Fe(III), either incorporated upon protein synthesis or generated upon rebounding the hydroxyl radical during oxidation, into Fe(II). Finally, we propose a remedied model for the catalytic cycle of dioxygenases by adding in the essential cofactor, ASC, which refreshes and regenerates inactive dioxygenase through recycling Fe(III) into Fe(II) in a dynamic "hit-and-run" manner.


Asunto(s)
Dioxigenasas , Animales , Ratones , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ácido Ascórbico/metabolismo , Compuestos Férricos , Epigenoma , Histona Demetilasas con Dominio de Jumonji , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Compuestos Ferrosos/metabolismo , ADN/metabolismo , Metilación de ADN
11.
Cell Death Discov ; 9(1): 333, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669963

RESUMEN

The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.

12.
Int J Antimicrob Agents ; 62(3): 106896, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343807

RESUMEN

Highly fluoroquinolone-resistant Salmonella enterica serotype Kentucky has become widespread in recent years, largely associated with the spread of sequence type 198 (ST198), which often leads to multidrug resistance. Research on the genomic epidemiology of Salmonella Kentucky in China is currently uncommon. In this study, we analysed the genomic epidemiology and antimicrobial resistance characteristics of Salmonella Kentucky ST198 collected from foodborne disease surveillance in Shenzhen, China, during 2010-2021, using whole-genome sequencing and antibiotic susceptibility testing. In addition, 158 global Salmonella Kentucky ST198 genomes were included for comparison. Among 8559 Salmonella isolates, 43 Salmonella Kentucky ST198 isolates were detected during 2010-2021. The global Salmonella Kentucky ST198 evolutionary tree was divided into five clades, with Shenzhen isolates distributed in clades 198.1, 198.2-1 and 198.2-2, mainly clustered with Chinese strains. Strains in clade 198.2 dominated in Shenzhen and all of them showed multidrug resistance. Nine strains showed high resistance to ceftriaxone, which was associated with blaCTX-M-14b in clade 198.2-1, which was demonstrated to be located on the chromosome. Fifteen strains showed high resistance to ciprofloxacin, which was associated with carriage of qnrS1 in clade 198.2-2. qnrS1 was first located on an IncHI2 plasmid and then transferred into the chromosome. Here we report the genomic and antimicrobial resistance characterisation of Salmonella Kentucky ST198 in Shenzhen. Of particular concern, we identified for the first time a clade 198.2-1 isolate carrying blaCTX-M-14b as well as chromosomally located qnrS1 in clade 198.2-2 of Salmonella Kentucky ST198 in China, highlighting the necessity of surveillance of clade 198.2.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Humanos , Antibacterianos/farmacología , Salmonella enterica/genética , Serogrupo , Infecciones por Salmonella/epidemiología , Kentucky , Farmacorresistencia Bacteriana Múltiple/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-37279101

RESUMEN

The main role of inert fillers in polymer electrolytes is to enhance ionic conductivity. However, lithium ions in gel polymer electrolytes (GPEs) conduct in liquid solvent rather than along the polymer chains. So far, the main role of inert fillers in improving the electrochemical performance of GPEs is still unclear. Here, various low-cost and common inert fillers (Al2O3, SiO2, TiO2, ZrO2) are introduced into GPEs to study their effects on Li-ion polymer batteries. It is found that the addition of inert fillers has different effects on ionic conductivity, mechanical strength, thermal stability, and, dominantly, interfacial properties. Compared with other gel electrolytes containing SiO2, TiO2, or ZrO2 fillers, those with Al2O3 fillers exhibit the most favorable performance. The high performance is ascribed to the interaction between the surface functional groups of Al2O3 and LiNi0.8Co0.1Mn0.1O2, which alleviates the decomposition of the organic solvent by the cathode, resulting in the formation of a high-quality Li+ conductor interfacial layer. This study provides an important reference for the selection of fillers in GPEs, surface modification of separators, and cathode surface coating.

15.
Circ Res ; 133(3): 220-236, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37377022

RESUMEN

BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Humanos , Ratones , Corazón , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo
16.
Ecotoxicol Environ Saf ; 259: 115007, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209571

RESUMEN

Wastewater treatment plants (WWTPs) are significant contributors to energy consumption and anthropogenic greenhouse gas (GHG) emissions. For achieving carbon reduction in the wastewater treatment industry, the direct and indirect GHG emissions generated by WWTPs need to be understood from a holistic perspective. This study estimated GHG emissions from WWTPs at the country scale by integrating process-based life cycle assessment and statistical data. On-site data were collected from 17 WWTPs of various regions in China. Uncertainty analysis based on Monte Carlo was also performed, so as to provide more reliable results. The results show that life cycle GHG emissions generated from the wastewater treatment process vary from 0.29 kg CO2 eq/m3 to 1.18 kg CO2 eq/m3 based on 17 sample WWTPs. The key factors contributing to overall GHG emissions are also identified as carbon dioxide (fossil) and methane (fossil) to air mainly generated from electricity generation, and methane (biogenic) and nitrous oxide (biogenic) to air mainly generated from wastewater treatment. National average GHG emissions was evaluated with the value of 0.88 kg CO2 eq/m3, with on-site GHG emissions and off-site electricity-based GHG emissions accounting for 32% and 34%, respectively. The total GHG emissions generated from wastewater treatment are 56.46 billion kg CO2 eq in 2020, with Guangdong province having the dominant contribution. Policy suggestions (e.g., further adjusting the electricity grid toward a low carbon structure, improving technology to promote treatment efficiency and energy recovery) were highly recommended so that national GHG emissions of WWTPs can be reduced. In order to achieve the synergy of pollutant removal and GHG emission reduction, policy-making on wastewater treatment should be tailored to specific local conditions.


Asunto(s)
Gases de Efecto Invernadero , Purificación del Agua , Animales , Gases de Efecto Invernadero/análisis , Eliminación de Residuos Líquidos/métodos , Dióxido de Carbono/análisis , Efecto Invernadero , Metano/análisis , China , Estadios del Ciclo de Vida
17.
Nano Lett ; 23(8): 3630-3636, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36847547

RESUMEN

The discontinuous interfacial contact of solid-state polymer metal batteries is due to the stress changes in the electrode structure during cycling, resulting in poor ion transport. Herein, a rigid-flexible coupled interface stress modulation strategy is developed to solve the above issues, which is to design a rigid cathode with enhanced solid-solution behavior to guide the uniform distribution of ions and electric field. Meanwhile, the polymer components are optimized to build an organic-inorganic blended flexible interfacial film to relieve the change of interfacial stress and ensure rapid ion transmission. The fabricated battery comprising a Co-modulated P2-type layered cathode (Na0.67Mn2/3Co1/3O2) and a high ion conductive polymer could deliver good cycling stability without distinct capacity fading (72.8 mAh g-1 over 350 cycles at 1 C), outperforming those without Co modulation or interfacial film construction. This work demonstrates a promising rigid-flexible coupled interfacial stress modulation strategy for polymer-metal batteries with excellent cycling stability.

18.
Nat Commun ; 14(1): 315, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658155

RESUMEN

N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.


Asunto(s)
Oocitos , Oogénesis , Animales , Oocitos/metabolismo , Desarrollo Embrionario/genética , Transcriptoma/genética , ARN/metabolismo , Mamíferos/genética
19.
J Stomatol Oral Maxillofac Surg ; 124(1): 101263, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35977661

RESUMEN

BACKGROUND: Hyoid bone syndrome is a type of faciocervical pain and occasionally concomitant clicking larynx that is caused by degeneration and/or elongation of the greater horn of the hyoid bone at the attachment of the stylohyoid ligament. CASES PRESENTATION: We report five patients who presented with deep-seated, dull, aching, throat pain that radiated from neck, accompanying by throat clicking while speaking, swallowing, yawning, and turning head. Most notably, one of them also complained an intermittent ulcer hemorrhage in the tongue base. Diagnostic tests included physical palpation of the hyoid greater cornu and computed tomography examination. One patient did not accept the surgery, but other than that four patients responded well to resection of the abnormal hyoid bone, which resulted in immediate and complete relief of their symptoms and with no postoperative complications. CONCLUSIONS: Clicking sensation and pain while deglutition is an unpleasant condition, which produces physiological and psychological bearings. This dictates the need for accurate diagnosis and proper management of the condition. Oral and maxillofacial surgeons involved in the treatment of orofacial pain should consider this rare condition as a differential diagnosis.


Asunto(s)
Hueso Hioides , Traumatismos del Cuello , Humanos , Hueso Hioides/cirugía , Síndrome , Cuello , Dolor Facial/diagnóstico , Dolor Facial/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA