Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065481

RESUMEN

The morphological adjustments of euhalophytes are well-known to be influenced by the soil-soluble salt variation; however, whether and how these changes in morphological traits alter the biomass allocation pattern remains unclear, especially under different NaCl levels. Therefore, an allometric analysis was applied to investigate the biomass allocation pattern and morphological plasticity, and the carbon (C), nitrogen (N), and phosphorus (P) stoichiometric characteristics of the euhalophyte Suaeda Salsa (S. salsa) at the four soil-soluble salt levels of no salt (NS), light salt (LS), moderate salt (MS), and heavy salt (HS). The results showed that soil-soluble salts significantly change the biomass allocation to the stems and leaves (p < 0.05). With the growth of S. salsa, the NS treatment produced a downward leaf mass ratio (LMR) and upward stem mass ratio (SMR); this finding was completely different from that for the salt treatments. When S. salsa was harvested on the 100th day, the HS treatment had the highest LMR (61%) and the lowest SMR (31%), while the NS treatment was the opposite, with an LMR of 44% and an SMR of 50%. Meanwhile, the soil-soluble salt reshaped the morphological characteristics of S. salsa (e.g., root length, plant height, basal stem diameter, and leaf succulence). Combined with the stoichiometric characteristics, N uptake restriction under salt stress is a vital reason for inhibited stem growth. Although the NS treatment had the highest biomass (48.65 g root box-1), the LS treatment had the highest salt absorption (3.73 g root box-1). In conclusion, S. salsa can change its biomass allocation pattern through morphological adjustments to adapt to different saline-alkali habitats. Moreover, it has an optimal biological desalting effect in lightly saline soil dominated by NaCl.

2.
J Integr Neurosci ; 21(6): 169, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36424742

RESUMEN

BACKGROUND: To investigate the predictive accuracy of three-dimension (3D) time-of-flight (TOF) MR angiography (MRA) and 3D Fast Imaging Employing Steady-state Acquisition (FIESTA) techniques in assessing neurovascular compression (NVC) with specific vessels in patients with primary trigeminal neuralgia (TN). METHODS: Patients with single-site primary TN undergoing microvascular decompression (MVD) were retrospectively recruited. All patients had available preoperative magnetic resonance imaging (MRI) scans. A quantitative NVC scoring system was applied to assess the severity of NVC on MRI. The radiological findings were correlated with the intraoperative result to determine the diagnostic accuracy of MRI techniques. Besides, the radiological indicator of MVD was determined. RESULTS: Seventy-three TN patients were recruited. Thirty-three patient had bilateral NVC but with unilateral neuralgia. The average NVC score of the asymptomatic side was significantly lower than that of the symptomatic side (1.6 vs. 6.7; p < 0.001). A cut-off value of NVC >4 was determined as a radiological indicator of MVD with sensitivity and specificity of 82.2% and 98.6%, respectively Area Under Curve (AUC = 0.97; p < 0.001). Approximately 90% of symptomatic patients had the distance to REZ ≤3 mm. 68.5% of patients had a single conflicting vessel, and superior cerebellar artery (SCA) was the predominate vessel (46.6%). The sensitivity and specificity of MRI to detect NVC were 95.8% and 100%, respectively. Regarding each vessel, the cohen's kappa statistic (K) was 0.632 overall. CONCLUSIONS: 3D TOF MRA and FIESTA show an overall good ability to predict specific offending vessels. NVC score >4 is identified to predict TN, suggestive of subsequent surgical treatment.


Asunto(s)
Neuralgia del Trigémino , Humanos , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/cirugía , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional , Angiografía
3.
Front Plant Sci ; 13: 1040520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733586

RESUMEN

Sustainable agricultural development in semiarid and arid regions is severely restricted by soil and water salinization. Cultivation of the representative halophyte Suaeda salsa, which can be irrigated with saline water and cultivated on saline soils, is considered to be a potential solution to the issues of freshwater scarcity, soil salinization, and fodder shortage. However, the salt removal capacity and differences in the forage nutritive value of S. salsa under different saline water treatments remain unknown. Using the methods of field trials and randomized blocks design, we quantified salt accumulation in the aboveground biomass, and the biochemical and nutritive value of field-cultivated S. salsa in arid northwestern China under irrigation with water of different salinities [i.e., freshwater or water containing10, 20, 30, or 40 g/L NaCl). The fresh and dry weights of S. salsa increased, then decreased, with increase in salinity. The salt content of the plant's aboveground biomass increased to a constant range and, thus, the salt extraction of S. salsa was relatively stable under different salinities of irrigation water. Under the experimental conditions, the crude protein content significantly increased to 9.45% dry weight (DW) and then decreased to 6.85% DW, with an increase in salinity (p < 0.05). The neutral detergent fiber (42.93%-50.00% DW) and acid detergent fiber (34.76%-39.70% DW) contents were suitable for forage. The contents of trace elements, such as copper and zinc, were significantly increased after irrigation with saline water (p < 0.05). The forage of S. salsa is of high nutritive value for livestock, and contains low concentrations of anti-nutrients. Therefore, S. salsa can be considered for cultivation in saline soils irrigated with saline water. In addition, it provides a viable additional source of fodder in arid regions, where the availability of freshwater and non-saline arable land is limited.

4.
Front Plant Sci ; 12: 677767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234797

RESUMEN

Halophytes are capable of resisting salinity, and their root system is the part in direct contact with the saline soil environment. The aim of this study was to compare the responses of root morphology and rhizosphere characteristics to salinity between a halophyte, Suaeda salsa (suaeda), and a glycophyte, Beta vulgaris L. (sugar beet). The soil salt content was set to four levels (0.7, 1.2, 1.7, and 2.7%) by NaCl-treated plants. We investigated the soil pH, EC, nutrients and soil, plant ion (Na+, Cl-, K+, and Mg2+) concentration to evaluate the rhizospheric processes, and salt tolerance of suaeda by the root mat method. The highest biomass was in the 1.2% salt level for suaeda and in the 0.7% salt level for sugar beet. The root length and root surface area of suaeda showed similar trends to biomass, but the root diameter decreased by 11.5-17.9% with higher salinity. The Na+, Cl-, and K+ accumulations in the shoot of suaeda displayed higher than that in sugar beet, while the Mg2+ accumulation was lower in suaeda than that in sugar beet. High salinity resulted in increased pH and EC values in the rhizosphere for suaeda, but lower values of these parameters for sugar beet. Under high salinity, the Olsen phosphorus content was 0.50 g·kg-1 and 0.99 g·kg-1 higher in the rhizosphere than in the non-rhizosphere for suaeda and sugar beet. We concluded that the two species [halophyte, Suaeda salsa (suaeda), and a glycophyte, B. vulgaris L. (sugar beet)] showed diverse approaches for nutrient absorption under salinity stress. Suaeda altered its root morphology (smaller root diameter and longer roots) under salt stress to increase the root surface area, while sugar beet activated rhizospheric processes to take up more nutrients.

5.
Front Plant Sci ; 12: 630338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912201

RESUMEN

The period between seed germination and seedling establishment is one of the most vulnerable stages in the life cycle of annuals in the saline environments. Although germination characteristics of Suaeda salsa seeds have been reported, the comparative germination patterns of dimorphic seeds and seedling growth to different abiotic stresses remain poorly understood. In this study, germination responses of dimorphic seeds to light and temperature were compared. Meanwhile, responses of dimorphic seeds and thereafter seedlings of S. salsa to different concentrations of NaCl and Na2SO4 were also tested. The results showed that the light did not significantly affect germination percentage of brown seeds, but significantly promoted germination of black seeds. Brown seeds could reach high germination percentage over a wide temperature range, however, germination of black seeds gradually increased with the increase of temperature. Brown seeds had higher germination percentage and velocity than black seeds under the same salt conditions. However, black seeds had higher recovery germination than brown seeds when transferred to deionized water. Young seedlings had lower salt tolerance than germinating seeds. At the same concentrations, Na2SO4 had stronger inhibitory effect on seed germination and seedling growth than NaCl. This study comprehensively compared germination traits of dimorphic seeds and seedling growth of S. salsa, and then developed a conceptual model to explain their adaptation to harsh saline environment.

6.
Hu Li Za Zhi ; 68(1): 74-81, 2021 Feb.
Artículo en Chino | MEDLINE | ID: mdl-33521921

RESUMEN

BACKGROUND & PROBLEMS: Patients with critical illnesses face an elevated risk of medical adhesive relation skin injuries (MARSI), which have negative, subsequent impacts on recovery and quality of healthcare. PURPOSE: The aim of this project was to decrease the incidence of MARSI in the surgical intensive care unit and to improve the accuracy of MARSI preventive care implementation. RESOLUTIONS: The intervention included the implementation of product-use cards, high-risk warning slogans, education programs, experience workshops, and a standard prevention-care protocol for MARSI. RESULTS: After project implementation, the incidence rate of MARSI decreased from 18.2% to 0%-9.3%, and the accuracy rate of preventive care increased from 38.6% to 95.5%. CONCLUSIONS: This project effectively reduced the incidence of skin injury and improved the quality of critical care. The skills related to the care and prevention of MARSI have been implemented throughout the hospital.


Asunto(s)
Adhesivos , Enfermedades de la Piel , Adhesivos/efectos adversos , Cuidados Críticos , Humanos , Incidencia , Unidades de Cuidados Intensivos , Piel , Enfermedades de la Piel/cirugía
7.
Sci Rep ; 10(1): 1472, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001738

RESUMEN

Interest in the use of enhanced-efficiency nitrogen (N) fertilizers (EENFs) has increased in recent years due to their potential to increase crop yield and reduce environmental N loss. Drip-fertigation is widely used for crop production in arid regions to improve water and nutrient use efficiency whereas the effectiveness of EENFs with drip irrigation remains unclear. A field experiment was conducted in 2015 and 2016 to examine the effects of EENFs on yield, N use and quality of cotton (Gossypium hirsutum) grown under drip-fertigation in arid NW China. Treatments included an unfertilized control and application of 240 kg N ha-1 by polymer-coated urea (ESN), urea alone, or urea plus urease (NBPT) and nitrification (DCD) inhibitors. ESN was all banded in the plant row at planting, whereas urea was applied with 20% N banded at planting and 80% N by six fertigation events over the growing season. Results showed there was generally no treatment effect on seed and lint yield, N concentration or allocations, N recovery efficiency and fiber quality index of cotton. A lack of treatment effect could be due to N supplied with drip-fertigation better synthesized with crop N needs and the relatively high soil native NO3- availability, which hindered the effect of polymer-coated urea and double inhibitors. These results highlight the challenge of the employment of EENFs products for drip-fertigation system in arid area. Further research is required to define the field conditions under which the agronomic efficiency of EENFs products may be achieved in accordance with weather conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA