Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Drug Discov Today ; 29(7): 104051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838960

RESUMEN

Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.


Asunto(s)
Músculo Liso Vascular , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Músculo Liso Vascular/metabolismo , Células Endoteliales/metabolismo , Señalización del Calcio/fisiología , Miocitos del Músculo Liso/metabolismo
2.
J Physiol ; 601(8): 1501-1514, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856073

RESUMEN

Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.


Asunto(s)
Dioxigenasas , MicroARNs , Embarazo , Femenino , Animales , Ovinos , Arteria Uterina/fisiología , Especies Reactivas de Oxígeno/metabolismo , Hipoxia , MicroARNs/genética , MicroARNs/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/farmacología
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674858

RESUMEN

Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.


Asunto(s)
Circulación Placentaria , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Células Endoteliales , Placenta/irrigación sanguínea , Estrógenos
4.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552639

RESUMEN

Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.

5.
Br J Pharmacol ; 179(19): 4640-4654, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35776536

RESUMEN

BACKGROUND AND PURPOSE: Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA-210 (miR-210) in gestational hypoxia-induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR-210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia-induced suppression of STOCs in uterine arteries. EXPERIMENTAL APPROACH: Resistance-sized uterine arteries were isolated from near-term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2 ) for 48 h. KEY RESULTS: Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR-210 mimic to normoxic arteries and blocked by antagomir miR-210-LNA in hypoxic arteries. Hypoxia or miR-210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria-targeted antioxidant MitoQ. Hypoxia and miR-210 down-regulated iron-sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large-conductance Ca2+ -activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. CONCLUSION AND IMPLICATIONS: This study demonstrates a novel mechanistic role for the miR-210-ISCU-mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.


Asunto(s)
MicroARNs , Arteria Uterina , Animales , Femenino , Humanos , Hipoxia/metabolismo , MicroARNs/metabolismo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Arteria Uterina/metabolismo
6.
Curr Hypertens Rep ; 24(6): 157-172, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35254588

RESUMEN

PURPOSE OF REVIEW: Preeclampsia complicates 5-10% of all pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochondria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive. RECENT FINDINGS: During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure. In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preeclampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.


Asunto(s)
Hipertensión , Enfermedades Placentarias , Preeclampsia , Femenino , Humanos , Hipertensión/complicaciones , Mitocondrias , Placenta , Enfermedades Placentarias/metabolismo , Enfermedades Placentarias/patología , Preeclampsia/etiología , Embarazo
7.
Drug Discov Today ; 26(11): 2754-2773, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302972

RESUMEN

Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.


Asunto(s)
Desarrollo de Medicamentos , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Preeclampsia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Estrés del Retículo Endoplásmico , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo , Circulación Placentaria , Preeclampsia/tratamiento farmacológico , Preeclampsia/fisiopatología , Embarazo , Respuesta de Proteína Desplegada , Remodelación Vascular
8.
Antioxidants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800426

RESUMEN

Hypoxia is a common and severe stress to an organism's homeostatic mechanisms, and hypoxia during gestation is associated with significantly increased incidence of maternal complications of preeclampsia, adversely impacting on the fetal development and subsequent risk for cardiovascular and metabolic disease. Human and animal studies have revealed a causative role of increased uterine vascular resistance and placental hypoxia in preeclampsia and fetal/intrauterine growth restriction (FGR/IUGR) associated with gestational hypoxia. Gestational hypoxia has a major effect on mitochondria of uteroplacental cells to overproduce reactive oxygen species (ROS), leading to oxidative stress. Excess mitochondrial ROS in turn cause uteroplacental dysfunction by damaging cellular macromolecules, which underlies the pathogenesis of preeclampsia and FGR. In this article, we review the current understanding of hypoxia-induced mitochondrial ROS and their role in placental dysfunction and the pathogenesis of pregnancy complications. In addition, therapeutic approaches selectively targeting mitochondrial ROS in the placental cells are discussed.

10.
Cardiovasc Res ; 117(3): 792-804, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32251501

RESUMEN

AIMS: Our recent study demonstrated that increased Ca2+ sparks and spontaneous transient outward currents (STOCs) played an important role in uterine vascular tone and haemodynamic adaptation to pregnancy. The present study examined the role of ryanodine receptor (RyR) subtypes in regulating Ca2+ sparks/STOCs and myogenic tone in uterine arterial adaptation to pregnancy. METHODS AND RESULTS: Uterine arteries isolated from non-pregnant and near-term pregnant sheep were used in the present study. Pregnancy increased the association of α and ß1 subunits of large-conductance Ca2+-activated K+ (BKCa) channels and enhanced the co-localization of RyR1 and RyR2 with the ß1 subunit in the uterine artery. In contrast, RyR3 was not co-localized with BKCa ß1 subunit. Knockdown of RyR1 or RyR2 in uterine arteries of pregnant sheep downregulated the ß1 but not α subunit of the BKCa channel and decreased the association of α and ß1 subunits. Unlike RyR1 and RyR2, knockdown of RyR3 had no significant effect on either expression or association of BKCa subunits. In addition, knockdown of RyR1 or RyR2 significantly decreased Ca2+ spark frequency, suppressed STOCs frequency and amplitude, and increased pressure-dependent myogenic tone in uterine arteries of pregnant animals. RyR3 knockdown did not affect Ca2+ sparks/STOCs and myogenic tone in the uterine artery. CONCLUSION: Together, the present study demonstrates a novel mechanistic paradigm of RyR subtypes in the regulation of Ca2+ sparks/STOCs and uterine vascular tone, providing new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arteria Uterina/metabolismo , Vasoconstricción , Adaptación Fisiológica , Animales , Presión Arterial , Femenino , Regulación de la Expresión Génica , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Embarazo , Canal Liberador de Calcio Receptor de Rianodina/genética , Oveja Doméstica , Técnicas de Cultivo de Tejidos
11.
Hypertension ; 76(3): 930-942, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683903

RESUMEN

Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.


Asunto(s)
Mal de Altura/metabolismo , Señalización del Calcio/fisiología , Retículo Endoplásmico/metabolismo , Hipoxia , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arteria Uterina/fisiología , Vasoconstricción/fisiología , Animales , Estrés del Retículo Endoplásmico , Femenino , Hipoxia/etiología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Potenciales de la Membrana , Estrés Oxidativo/fisiología , Embarazo , Especies Reactivas de Oxígeno , Ovinos
12.
Cells ; 8(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766319

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/genética , MicroARNs/genética , Mitocondrias/genética , Apoptosis , Metabolismo Energético , Regulación de la Expresión Génica/genética , Genoma Mitocondrial/genética , Humanos , Inflamación , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo
13.
Cells ; 8(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671866

RESUMEN

Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.


Asunto(s)
MicroARNs/fisiología , Placenta/irrigación sanguínea , Circulación Placentaria/genética , Útero/irrigación sanguínea , Animales , Arterias/patología , Arterias/fisiopatología , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Placenta/metabolismo , Placenta/patología , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Útero/metabolismo , Útero/patología
14.
J Endocrinol ; 242(1): T121-T133, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31018174

RESUMEN

Glucocorticoids are primary stress hormones and can improve neonatal survival when given to pregnant women threatened by preterm birth or to preterm infants. It has become increasingly apparent that glucocorticoids, primarily by interacting with glucocorticoid receptors, play a critical role in late gestational cardiac maturation. Altered glucocorticoid actions contribute to the development and progression of heart disease. The knowledge gained from studies in the mature heart or cardiac damage is insufficient but a necessary starting point for understanding cardiac programming including programming of the cardiac microenvironment by glucocorticoids in the fetal heart. This review aims to highlight the potential roles of glucocorticoids in programming of the cardiac microenvironment, especially the supporting cells including endothelial cells, immune cells and fibroblasts. The molecular mechanisms by which glucocorticoids regulate the various cellular and extracellular components and the clinical relevance of glucocorticoid functions in the heart are also discussed.


Asunto(s)
Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Glucocorticoides/metabolismo , Animales , Técnicas de Reprogramación Celular , Humanos , Recien Nacido Prematuro
15.
Oxid Med Cell Longev ; 2019: 9194269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881600

RESUMEN

During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.


Asunto(s)
Estrógenos/metabolismo , Estrés Oxidativo/genética , Placenta/metabolismo , Complicaciones del Embarazo/terapia , Útero/metabolismo , Femenino , Humanos , Embarazo , Complicaciones del Embarazo/patología
16.
Hypertension ; 73(3): 691-702, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30661479

RESUMEN

Spontaneous transient outward currents (STOCs) at physiological membrane potentials of vascular smooth muscle cells fundamentally regulate vascular myogenic tone and blood flow in an organ. We hypothesize that heightened STOCs play a key role in uterine vascular adaptation to pregnancy. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Ca2+ sparks were measured by confocal microscopy, and STOCs were determined by electrophysiological recording in smooth muscle cells. Percentage of Ca2+ spark firing myocytes increased dramatically at the resting condition in uterine arterial smooth muscle of pregnant animals, as compared with nonpregnant animals. Pregnancy upregulated the expression of RyRs (ryanodine receptors) and significantly boosted Ca2+ spark frequency. Ex vivo treatment of uterine arteries of nonpregnant sheep with estrogen and progesterone imitated pregnancy-induced RyR upregulation. STOCs occurred at much more negative membrane potentials in uterine arterial myocytes of pregnant animals. STOCs in uterine arterial myocytes were diminished by inhibiting large-conductance Ca2+-activated K+ (BKCa) channels and RyRs, thus functionally linking Ca2+ sparks and BKCa channel activity to STOCs. Pregnancy and steroid hormone treatment significantly increased STOCs frequency and amplitude in uterine arteries. Of importance, inhibition of STOCs with RyR inhibitor ryanodine eliminated pregnancy- and steroid hormone-induced attenuation of uterine arterial myogenic tone. Thus, the present study demonstrates a novel role of Ca2+ sparks and STOCs in the regulation of uterine vascular tone and provides new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.


Asunto(s)
Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Preñez , Flujo Sanguíneo Regional/fisiología , Arteria Uterina/fisiología , Útero/irrigación sanguínea , Vasoconstricción/fisiología , Adaptación Fisiológica , Animales , Femenino , Potenciales de la Membrana , Microscopía Confocal , Modelos Animales , Músculo Liso Vascular/citología , Técnicas de Placa-Clamp , Embarazo , Ovinos , Arteria Uterina/citología
17.
J Physiol ; 596(23): 5891-5906, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29869786

RESUMEN

KEY POINTS: Gestational hypoxia represses ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression in uterine arteries, which is recovered by inhibiting endogenous miR-210. Inhibition of miR-210 rescues BKCa channel expression and current in uterine arteries of pregnant animals acclimatized to high altitude hypoxia in a TET-dependent manner. miR-210 blockade restores BKCa channel-mediated relaxations and attenuates pressure-dependent myogenic tone in uterine arteries of pregnant animals acclimatized to high altitude. ABSTRACT: Gestational hypoxia at high altitude has profound adverse effects on the uteroplacental circulation, and is associated with increased incidence of preeclampsia and fetal intrauterine growth restriction. Previous studies demonstrated that suppression of large-conductance Ca2+ -activated K+ (BKCa ) channel function played a critical role in the maladaptation of uteroplacental circulation caused by gestational hypoxia. Yet, the mechanisms underlying gestational hypoxia-induced BKCa channel repression remain undetermined. The present study investigated a causal role of microRNA-210 (miR-210) in hypoxia-mediated repression of BKCa channel expression and function in uterine arteries using a sheep model. The results revealed that gestational hypoxia significantly decreased ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression in uterine arteries, which was recovered by inhibiting endogenous miR-210 with miR-210 locked nucleic acid (miR-210-LNA). Of importance, miR-210-LNA restored BKCa channel ß1 subunit expression in uterine arteries, which was blocked by a competitive TET inhibitor, fumarate, thus functionally linking miR-210 to the TET1-BKCa channel cascade. In addition, miR-210-LNA reversed hypoxia-mediated suppression of BKCa channel function and rescued the effect of steroid hormones in upregulating BKCa channel expression and function in uterine arteries, which were also ablated by fumarate. Collectively, the present study demonstrates a causative effect of miR-210 in the downregulation of TET1 and subsequent repression of BKCa channel expression and function, providing a novel mechanistic insight into the regulation of BKCa channel function and the molecular basis underlying the maladaptation of uterine vascular function in gestational hypoxia.


Asunto(s)
Mal de Altura/fisiopatología , MicroARNs , Canales de Potasio Calcio-Activados/fisiología , Arteria Uterina/fisiología , Animales , Femenino , Oxigenasas de Función Mixta/fisiología , Embarazo , Proteínas Proto-Oncogénicas/fisiología , Ovinos
18.
Physiol Rev ; 98(3): 1241-1334, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717932

RESUMEN

Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.


Asunto(s)
Desarrollo Fetal , Hipoxia Fetal/metabolismo , Adaptación Fisiológica , Tejido Adiposo/embriología , Animales , Epigénesis Genética , Femenino , Corazón Fetal/crecimiento & desarrollo , Cardiopatías/etiología , Humanos , Hipertensión Pulmonar/congénito , Sistema Hipotálamo-Hipofisario , Salud Materna , Sistema Hipófiso-Suprarrenal , Circulación Placentaria , Embarazo
19.
Hypertension ; 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28739977

RESUMEN

Gestational hypoxia inhibits large conductance Ca2+-activated K+ (BKCa) channel expression and function in uterine arterial adaptation to pregnancy. Given the findings that microRNA-210 (miR-210) is increased in hypoxia during gestation and preeclampsia, the present study sought to investigate the role of miR-210 in the regulation of BKCa channel adaptation in the uterine artery. Gestational hypoxia significantly increased uterine vascular resistance and blood pressure in pregnant sheep and upregulated miR-210 in uterine arteries. MiR-210 bound to ovine ten-eleven translocation methylcytosine dioxygenase 1 mRNA 3' untranslated region and decreased ten-eleven translocation methylcytosine dioxygenase 1 mRNA and protein abundance in uterine arteries of pregnant sheep, as well as abrogated steroid hormone-induced upregulation of ten-eleven translocation methylcytosine dioxygenase 1 expression in uterine arteries of nonpregnant animals. In accordance, miR-210 blocked pregnancy- and steroid hormone-induced upregulation of BKCa channel ß1 subunit expression in uterine arteries. Functionally, miR-210 suppressed BKCa channel current density in uterine arterial myocytes of pregnant sheep and inhibited steroid hormone-induced increases in BKCa channel currents in uterine arteries of nonpregnant animals. Blockade of endogenous miR-210 inhibited hypoxia-induced suppression of BKCa channel activity. In addition, miR-210 decreased BKCa channel-mediated relaxations and increased pressure-dependent myogenic tone of uterine arteries. Together, the results demonstrate that miR-210 plays an important role in the downregulation of ten-eleven translocation methylcytosine dioxygenase 1 and repression of BKCa channel function in uterine arteries, revealing a novel mechanism of epigenetic regulation in the maladaptation of uterine hemodynamics in gestational hypoxia and preeclampsia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA