Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413698, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363762

RESUMEN

Anion exchange membrane water electrolyzer (AEMWE) is a potentially cost-effective technology for green hydrogen production. Although the normal current densities of AEMWEs are below 3 A·cm-2, operating them at higher current densities represents an efficient, but little-explored approach to decrease the total cost of hydrogen production. We show here that a benchmark AEMWE has an operational lifetime of only seconds at an ultrahigh current density of 10 A·cm-2. By using a more conductive and robust AEM, and judicious choices of ionomers, catalyst, and porous transport layer, we have developed AEMWEs that stably operate at 10 A·cm-2 with extended lifetimes. The optimized AEMWE has an operational lifetime of more than 800 hours, a 5-order magnetite improvement over the current benchmark. The cell voltage is only 2.3 V at 10 A·cm-2, comparable to those of the state-of-the-art devices operating at current densities lower than 3 A·cm-2. This work demonstrates the potential of ultrahigh current density AEMWEs.

2.
ACS Cent Sci ; 10(8): 1657-1666, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39220696

RESUMEN

The construction of fluorinated architectures has been a topic of interest to medicinal chemists due to their unique ability to improve the pharmacokinetic properties of bioactive compounds. However, the stereoselective synthesis of fluoro-organic compounds with vicinal stereogenic centers is a challenge. Herein, we present a directing-groupfree nickel-hydride catalyzed hydroalkylation of fluoroalkenes to afford fluorinated motifs with two adjacent chiral centers in excellent yields and stereoselectivities. Our method provides expedient access to biologically relevant, highly enantioenriched organofluorine compounds. Furthermore, the strategy can be used for the diastereo- and enantioselective synthesis of vicinal difluorides, which have recently gained attention in the fields of organocatalysis and peptide mimics.

4.
Proc Natl Acad Sci U S A ; 121(37): e2408716121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226360

RESUMEN

Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.


Asunto(s)
Antibacterianos , Benzopiranos , Indoles , Antibacterianos/farmacología , Antibacterianos/química , Benzopiranos/química , Benzopiranos/farmacología , Indoles/química , Micelas , Nitrocompuestos/química , Pirimidinonas/química , Pirimidinonas/farmacología
5.
J Am Chem Soc ; 146(30): 21017-21024, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39029108

RESUMEN

The devastating COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made society acutely aware of the urgency in developing effective techniques to timely monitor the outbreak of previously unknown viral species as well as their mutants, which could be even more lethal and/or contagious. Here, we report a fluorogenic sensor array consisting of peptides truncated from the binding domain of human angiotensin-converting enzyme 2 (hACE2) for SARS-CoV-2. A set of five fluorescently tagged peptides were used to construct the senor array in the presence of different low-dimensional quenching materials. When orthogonally incubated with the wild-type SARS-CoV-2 and its variants of concern (VOCs), the fluorescence of each peptide probe was specifically recovered, and the different recovery rates provide a "fingerprint" characteristic of each viral strain. This, in turn, allows them to be differentiated from each other using principal component analysis. Interestingly, the classification result from our sensor array agrees well with the evolutionary relationship similarity of the VOCs. This study offers insight into the development of effective sensing tools for highly contagious viruses and their mutants based on rationally truncating peptide ligands from human receptors.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Colorantes Fluorescentes , Péptidos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/enzimología , SARS-CoV-2/aislamiento & purificación , Humanos , Péptidos/química , Péptidos/metabolismo , Colorantes Fluorescentes/química , COVID-19/virología , COVID-19/diagnóstico , Técnicas Biosensibles/métodos
6.
Chem Commun (Camb) ; 60(63): 8240-8243, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007923

RESUMEN

O-GlcNAcase (OGA) is implicated in several important biological and disease-relevant processes. Here, we synthesized fluorogenic probes for OGA by grafting GlcNAc directly or using a self-immolative linker to the hydroxyl position of 4-hydroxylisoindoline (BHID), a typical excited-state intramolecular proton transfer (ESIPT) probe. The probe was used for a fluorogenic assay to determine the half maximal inhibitory concentration of a known OGA inhibitor and differentiate between OGA and hexosaminidase when GlcNAc is replaced by GlcNPr, where a propionyl group is used instead of an acetyl group.


Asunto(s)
Colorantes Fluorescentes , Isoindoles , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Isoindoles/química , Isoindoles/síntesis química , Humanos , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Espectrometría de Fluorescencia
7.
Angew Chem Int Ed Engl ; 63(31): e202406008, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38713131

RESUMEN

Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroarylalanines, but their substrate scope remains limited, typically including only arylacrylic acids. Moreover, the enantioselectivity in the hydroamination of electron-deficient substrates is often poor. Here, we report the structure-based engineering of PAL from Planctomyces brasiliensis (PbPAL), enabling preparative-scale enantioselective hydroaminations of previously inaccessible yet synthetically useful substrates, such as amide- and ester-containing fumaric acid derivatives. Through the elucidation of cryo-electron microscopy (cryo-EM) PbPAL structure and screening of the structure-based mutagenesis library, we identified the key active site residue L205 as pivotal for dramatically enhancing the enantioselectivity of hydroamination reactions involving electron-deficient substrates. Our engineered PALs demonstrated exclusive α-regioselectivity, high enantioselectivity, and broad substrate scope. The potential utility of the developed biocatalysts was further demonstrated by a preparative-scale hydroamination yielding tert-butyl protected l-aspartic acid, widely used as intermediate in peptide solid-phase synthesis.


Asunto(s)
Ácido Aspártico , Fenilanina Amoníaco-Liasa , Ingeniería de Proteínas , Estereoisomerismo , Ácido Aspártico/química , Ácido Aspártico/análogos & derivados , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/genética , Biocatálisis , Estructura Molecular
8.
Angew Chem Int Ed Engl ; 63(29): e202406767, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682392

RESUMEN

Cyclic sulfones have demonstrated important applications in drug discovery. However, the catalytic and enantioselective synthesis of chiral cyclic sulfones remains challenging. Herein, we develop nickel-catalyzed regiodivergent and enantioselective hydroalkylation of sulfolenes to streamline the synthesis of chiral alkyl cyclic sulfones. The method has broad scope and high functional group tolerance. The regioselectivity can be controlled by ligands only. A neutral PYROX ligand favors C3-alkylation whereas an anionic BOX ligand favors C2-alkylation. This control is kinetic in origin as the C2-bound Ni intermediates are always thermodynamically more stable. Reactivity study of a wide range of relevant Ni intermediates reveal a NiI/NiIII catalytic cycle with a NiII-H species as the resting state. The regio- and enantio-determining step is the insertion of this NiII-H species into 2-sulfolene. This work provides an efficient catalytic method for the synthesis of an important class of organic compounds and enhances the mechanistic understanding of Ni-catalyzed stereoselective hydroalkylation.

9.
Angew Chem Int Ed Engl ; 63(17): e202401575, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38357753

RESUMEN

A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.

10.
J Control Release ; 368: 251-264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403173

RESUMEN

Modulating the metabolism of cancer cells, immune cells, or both is a promising strategy to potentiate cancer immunotherapy in the nutrient-competitive tumor microenvironment. Glutamine has emerged as an ideal target as cancer cells highly rely on glutamine for replenishing the tricarboxylic acid cycle in the process of aerobic glycolysis. However, non-specific glutamine restriction may induce adverse effects in unconcerned tissues and therefore glutamine inhibitors have achieved limited success in the clinic so far. Here we report the synthesis and evaluation of a redox-responsive prodrug of 6-Diazo-5-oxo-L-norleucine (redox-DON) for tumor-targeted glutamine inhibition. When applied to treat mice bearing subcutaneous CT26 mouse colon carcinoma, redox-DON exhibited equivalent antitumor efficacy but a greatly improved safety profile, particularly, in spleen and gastrointestinal tract, as compared to the state-of-the-art DON prodrug, JHU083. Furthermore, redox-DON synergized with checkpoint blockade antibodies leading to durable cures in tumor-bearing mice. Our results suggest that redox-DON is a safe and effective therapeutic for tumor-targeted glutamine inhibition showing promise for enhanced metabolic modulatory immunotherapy. The approach of reversible chemical modification may be generalized to other metabolic modulatory drugs that suffer from overt toxicity.


Asunto(s)
Neoplasias del Colon , Profármacos , Animales , Ratones , Diazooxonorleucina/uso terapéutico , Diazooxonorleucina/metabolismo , Diazooxonorleucina/farmacología , Profármacos/uso terapéutico , Glutamina/metabolismo , Glutamina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Oxidación-Reducción , Microambiente Tumoral
11.
Chem Rev ; 124(5): 2699-2804, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422393

RESUMEN

The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.


Asunto(s)
Colorantes Fluorescentes , Medicina de Precisión , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Fluorescencia , Nanomedicina Teranóstica
12.
Chimia (Aarau) ; 77(7-8): 494-500, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38047791

RESUMEN

Anion exchange membrane fuel cells (AEMFCs) are considered one of the most promising and efficient hydrogen conversion technologies due to their ability to use cost-effective materials. However, AEMFCs are still in the early stage of development and the lack of suitable anion exchange membranes (AEMs) is one major obstacle. In this review, we highlight three major challenges in AEMs development and discuss recent scientific advancements that address these challenges. We identify current trends and provide a perspective on future development of AEMs.

13.
Biomaterials ; 303: 122353, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925794

RESUMEN

In the design of delivery strategies for anticancer therapeutics, the controlled release of intact cargo at the destined tumor and metastasis locations is of particular importance. To this end, stimuli-responsive chemical linkers have been extensively investigated owing to their ability to respond to tumor-specific physiological stimuli, such as lowered pH, altered redox conditions, increased radical oxygen species and pathological enzymatic activities. To prevent premature action and off-target effects, anticancer therapeutics are chemically modified to be transiently inactivated, a strategy known as prodrug development. Prodrugs are reactivated upon stimuli-dependent release at the sites of interest. As most drugs and therapeutic proteins have the optimal activity when released from carriers in their native and original forms, traceless release mechanisms are increasingly investigated. In this review, we summarize the chemical toolkit for developing innovative traceless prodrug strategies for stimuli-responsive drug delivery and discuss the applications of these chemical modifications in anticancer treatment including cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Humanos , Profármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico
14.
Angew Chem Int Ed Engl ; 62(43): e202311896, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37671593

RESUMEN

Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.


Asunto(s)
Hidrogenasas , Metaloproteínas , Biotina/química , Estreptavidina/química , Hidrogenasas/química , Manganeso , Metaloproteínas/química , Catálisis
15.
ChemSusChem ; 16(21): e202300703, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37432646

RESUMEN

Within the field of lignin biorefining, significant research effort has been dedicated to the advancement of catalytic methods for lignocellulose depolymerization. However, another key challenge in lignin valorization is the conversion of the obtained monomers into higher value-added products. To address this challenge, new catalytic methods that can fully embrace the inherent complexity of their target substrates are needed. Here, we describe copper-catalyzed reactions for benzylic functionalization of lignin-derived phenolics via intermediate formation of hexafluoroisopropoxy-masked para-quinone methides (p-QMs). By controlling the rates of copper catalyst turnover and p-QM release, we have developed copper-catalyzed allylation and alkynylation reactions of lignin-derived monomers to install various unsaturated fragments amenable to further synthetic applications.

16.
Chem Sci ; 14(28): 7762-7769, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37476709

RESUMEN

Inspired by natural enzymes that possess multiple catalytic activities, here we develop a bifunctional metal-organic frame-work (MOF) for biosensing applications. Ultrasmall gold nano-particles (AuNPs) are grown in the internal cavities of an iron (Fe) porphyrin-based MOF to produce a hybridized nanozyme, AuNPs@PCN-224(Fe), in which AuNPs and PCN-224(Fe) exhibit the catalytic activity of glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively. We established that the bifunctional nanozyme was capable of a cascade reaction to generate hydrogen peroxide in the presence of d-glucose and oxygen in situ, and subsequently activate a colorimetric or chemiluminescent substrate through HRP-mimicking catalytic activity. The nanozyme was selective over a range of other saccharides, and 93% of the catalytic activity was retained after being recycled five times.

17.
Org Biomol Chem ; 21(22): 4661-4666, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212349

RESUMEN

Peroxynitrite (ONOO-) is an important oxygen/nitrogen reactive species implicated in a number of physiological and pathological processes. However, due to the complexity of the cellular micro-environment, the sensitive and accurate detection of ONOO- remains a challenging task. Here, we developed a long-wavelength fluorescent probe based on the conjugation between a TCF scaffold and phenylboronate; the resulting conjugate is capable of supramolecular host-guest assembly with human serum albumin (HSA) for the fluorogenic sensing of ONOO-. The probe exhibited an enhanced fluorescence over a low concentration range of ONOO- (0-9.6 µM), whist the fluorescence was quenched when the concentration of ONOO- exceeded 9.6 µM. In addition, when human serum albumin (HSA) was added, the initial fluorescence of the probe was significantly enhanced, which enabled the more sensitive detection of low-concentrations of ONOO- in aqueous buffer solution and in cells. The molecular structure of the supramolecular host-guest ensemble was determined using small-angle X-ray scattering.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/química , Colorantes Fluorescentes/química , Especies Reactivas de Oxígeno , Estructura Molecular , Límite de Detección
18.
J Am Chem Soc ; 145(16): 8917-8926, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040584

RESUMEN

Chemical tools capable of classifying multidrug-resistant bacteria (superbugs) can facilitate early-stage disease diagnosis and help guide precision therapy. Here, we report a sensor array that permits the facile phenotyping of methicillin-resistant Staphylococcus aureus (MRSA), a clinically common superbug. The array consists of a panel of eight separate ratiometric fluorescent probes that provide characteristic vibration-induced emission (VIE) profiles. These probes bear a pair of quaternary ammonium salts in different substitution positions around a known VIEgen core. The differences in the substituents result in varying interactions with the negatively charged cell walls of bacteria. This, in turn, dictates the molecular conformation of the probes and affects their blue-to-red fluorescence intensity ratios (ratiometric changes). Within the sensor array, the differences in the ratiometric changes for the probes result in "fingerprints" for MRSA of different genotypes. This allows them to be identified using principal component analysis (PCA) without the need for cell lysis and nucleic acid isolation. The results obtained with the present sensor array agree well with those obtained using polymerase chain reaction (PCR) analysis.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Genotipo , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Antibacterianos
19.
Adv Mater ; 35(26): e2210432, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36642967

RESUMEN

Anion-exchange-membrane fuel cells (AEMFCs) are a cost-effective alternative to proton-exchange-membrane fuel cells (PEMFCs). The development of high-performance and durable AEMFCs requires highly conductive and robust anion-exchange membranes (AEMs). However, AEMs generally exhibit a trade-off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase-separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm-1 at 80 °C) and high dimensional stability (swelling ratio <20% at 80 °C), excellent mechanical properties (tensile strength >80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non-precious Co-Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm-2 . The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm-2 .

20.
Chem Commun (Camb) ; 59(8): 1094-1097, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36625183

RESUMEN

Here, we report the simple construction of a supramolecular glycomaterial for the targeted delivery of antibiotics to P. aeruginosa in a photothermally-controlled manner. A galactose-pyrene conjugate (Gal-pyr) was developed to self-assemble with graphene nanoribbon-based nanowires via π-π stacking to produce a supramolecular glycomaterial, which exhibits a 1250-fold enhanced binding avidity toward a galactose-selective lectin when compared to Gal-pyr. The as-prepared glycomaterial when loaded with an antibiotic that acts as an inhibitor of the bacterial folic acid biosynthetic pathway eradicated P. aeruginosa-derived biofilms under near-infrared light irradiation due to the strong photothermal effect of the nanowires accelerating antibiotic release.


Asunto(s)
Grafito , Nanotubos de Carbono , Grafito/química , Antibacterianos , Galactosa , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA