RESUMEN
AIMS: To compare the efficacy of thyroid hormone receptor beta (THR-ß) agonists, fibroblast growth factor 21 (FGF-21) analogues, glucagon-like peptide-1 receptor agonists (GLP-1RAs), GLP-1-based polyagonists, and pan-peroxisome proliferator-activated receptor (Pan-PPAR) agonists in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: A database search for relevant randomized double-blind controlled trials published until July 11, 2024, was conducted. Primary outcomes were the relative change in hepatic fat fraction (HFF) and liver stiffness assessed non-invasively by magnetic resonance imaging proton density fat fraction and elastography. Secondary outcomes included histology, liver injury index, lipid profile, glucose metabolism, blood pressure, and body weight. RESULTS: Twenty-seven trials (5357 patients with MASLD) were identified. For HFF reduction, GLP-1-based polyagonists were most potentially effective (mean difference [MD] -51.47; 95 % confidence interval [CI]: -68.25 to -34.68; surface under the cumulative ranking curve [SUCRA] 84.9) vs. placebo, followed by FGF-21 analogues (MD -47.08; 95 % CI: -58.83 to -35.34; SUCRA 75.5), GLP-1R agonists (MD -37.36; 95 % CI: -69.52 to -5.21; SUCRA 52.3) and THR-ß agonists (MD -33.20; 95 % CI: -43.90 to -22.51; SUCRA 36.9). For liver stiffness, FGF-21 analogues were most potentially effective (MD -9.65; 95 % CI: -19.28 to -0.01; SUCRA 82.2) vs. placebo, followed by THR-ß agonists (MD -5.79; 95 % CI: -9.50 to -2.09; SUCRA 58.2), and GLP-1RAs (MD -5.58; 95 % CI: -15.02 to 3.86; SUCRA 54.7). For fibrosis improvement in histology, GLP-1-based polyagonists were most potentially effective, followed by FGF-21 analogues, THR-ß agonists, Pan-PPAR agonists, and GLP-1R agonists; For MASH resolution in histology, GLP-1-based polyagonists were most potentially effective, followed by THR-ß agonists, GLP-1R agonists, FGF-21 analogues, and Pan-PPAR agonists. THR-ß agonists are well-balanced in liver steatosis and fibrosis, and excel at improving lipid profiles; FGF-21 analogues are effective at improving steatosis and particularly exhibit strong antifibrotic abilities. GLP-1R agonists showed significant benefits in improving liver steatosis, glucose metabolism, and body weight. GLP-1-based polyagonists have demonstrated the most potential efficacy overall in terms of comprehensive curative effect. Pan-PPAR agonists showed distinct advantages in improving liver function and glucose metabolism. CONCLUSION: These results illustrate the relative superiority of the five classes of therapy in the treatment of MASLD and may serve as guidance for the development of combination therapies.
RESUMEN
Tumor-associated macrophages (TAMs) greatly contribute to immune checkpoint inhibitor (ICI) resistance of cancer. However, its underlying mechanisms and whether TAMs can be promising targets to overcome ICI resistance remain to be unveiled. Through integrative analysis of immune multiomics data and single-cell RNA-seq data (iMOS) in lung adenocarcinoma (LUAD), lymphotoxin ß receptor (LTBR) is identified as a potential immune checkpoint of TAMs, whose high expression, duplication, and low methylation are correlated with unfavorable prognosis. Immunofluorescence staining shows that the infiltration of LTBR+ TAMs is associated with LUAD stages, immunotherapy failure, and poor prognosis. Mechanistically, LTΒR maintains immunosuppressive activity and M2 phenotype of TAMs by noncanonical nuclear factor kappa B and Wnt/ß-catenin signaling pathways. Macrophage-specific knockout of LTBR hinders tumor growth and prolongs survival time via blocking TAM immunosuppressive activity and M2 phenotype. Moreover, TAM-targeted delivery of LTΒR small interfering RNA improves the therapeutic effect of ICI via reversing TAM-mediated immunosuppression, such as boosting cytotoxic CD8+ T cells and inhibiting granulocytic myeloid-derived suppressor cells infiltration. Taken together, we bring forth an immune checkpoint discovery pipeline iMOS, identify LTBR as a novel immune checkpoint of TAMs, and propose a new immunotherapy strategy by targeting LTBR+ TAMs.
RESUMEN
BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.
Asunto(s)
Ratones Endogámicos C57BL , MicroARNs , Microglía , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , RatonesRESUMEN
The lithium (Li) metal anode is widely regarded as an ideal anode material for high-energy-density batteries. However, uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency (CE), limiting its broader application. Herein, an ether-based electrolyte (termed FGN-182) is formulated, exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts. The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+ transport kinetics. Notably, Li||Cu half cells exhibit an average CE reaching up to 99.56%. In particular, pouch cells equipped with high-loading lithium cobalt oxide (LCO, 3 mAh cm-2) cathodes, ultrathin Li chips (25 µm), and lean electrolytes (5 g Ah-1) demonstrate outstanding cycling performance, retaining 80% capacity after 125 cycles. To address the gas issue in the cathode under high voltage, cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182; the resulting high-voltage LCO||Li (4.4 V) pouch cells can cycle steadily over 93 cycles. This study demonstrates that, even with the use of ether-based electrolytes, it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.
RESUMEN
BACKGROUND: The effective treatment of non-alcoholic fatty liver disease (NAFLD) is an unmet medical need. Qushi Huayu (QSHY) is an empirical herbal formula with promising effects in NAFLD rodent models and a connection to gut microbiota regulation. HYPOTHESIS/PURPOSE: This study aimed to evaluate the effects of QSHY in patients with NAFLD through a multicenter, randomized, double-blind, double-dummy clinical trial. STUDY DESIGN: A total of 246 eligible patients with NAFLD and liver dysfunction were evenly divided to receive either QSHY and Dangfei Liganning capsule (DFLG) simulant or QSHY simulant and DFLG (an approved proprietary Chinese medicine for NAFLD in China) for 24 weeks. The primary outcomes were changes in liver fat content, assessed using vibration-controlled transient elastography, and serum alanine aminotransferase (ALT) levels from baseline to Week 24. RESULTS: Both QSHY and DFLG led to reductions in liver fat content and liver enzyme levels post-intervention (p < 0.05). Compared to DFLG, QSHY treatment improved ALT (ß, -0.128 [95 % CI, -0.25, -0.005], p = 0.041), aspartate transaminase (ß, -0.134 [95 % CI, -0.256 to -0.012], p = 0.032), and fibrosis-4 score (ß, -0.129 [95 % CI, -0.254 to -0.003], p = 0.044) levels. QSHY markedly improved gut dysbiosis compared to DFLG, with changes in Escherichia-Shigella and Bacteroides abundance linked to its therapeutic effect on reducing ALT. Patients with a high ALT response after QSHY treatment showed superior reductions in peripheral levels of phenylalanine and tyrosine, along with an elevation in the related microbial metabolite p-Hydroxyphenylacetic acid. CONCLUSION: Our results demonstrate favorable clinical potential for QSHY in the treatment of NAFLD.
Asunto(s)
Alanina Transaminasa , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Persona de Mediana Edad , Femenino , Método Doble Ciego , Alanina Transaminasa/sangre , Adulto , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Medicina Tradicional China/métodosRESUMEN
According to the latest consensus, many traditional diseases are considered metabolic diseases, such as cancer, type 2 diabetes, obesity, and cardiovascular disease. Currently, metabolic diseases are increasingly prevalent because of the ever-improving living standards and have become the leading threat to human health. Multiple therapy methods have been applied to treat these diseases, which improves the quality of life of many patients, but the overall effect is still unsatisfactory. Therefore, intensive research on the metabolic process and the pathogenesis of metabolic diseases is imperative. N6-methyladenosine (m6A) is an important modification of eukaryotic RNAs. It is a critical regulator of gene expression that is involved in different cellular functions and physiological processes. Many studies have indicated that m6A modification regulates the development of many metabolic processes and metabolic diseases. In this review, we summarized recent studies on the role of m6A modification in different metabolic processes and metabolic diseases. Additionally, we highlighted the potential m6A-targeted therapy for metabolic diseases, expecting to facilitate m6A-targeted strategies in the treatment of metabolic diseases.
RESUMEN
BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is a neoplastic disease that gradually develops due to genetic variations and epigenetic changes. Surgical excision is the first-line treatment for CRC. Accumulating evidence has shown that total intravenous anesthesia has beneficial effects for CRC patients as it decreases the probability of tumor recurrence and metastasis. Propofol is one of the most frequently used intravenous anesthetics in clinical practice. However, it remains unknown whether it can reduce recurrence and metastasis after surgery in cancer patients. METHODS: CRC cell lines (HCT116 and SW480) were cultured in vitro, and different concentrations of propofol were added to the cell culture medium. The proliferation effect of propofol on CRC cell lines was evaluated by CCK-8 assay. The effect of propofol on the migration and invasion of CRC cells was evaluated by scratch healing and Transwell experiments. The inhibitory effects of propofol on NF-κB and HIF-1α expressions in CRC cell lines were determined by Western blotting and immunofluorescence assays to further clarify the regulatory effects of propofol on NF-κB and HIF-1α. RESULTS: Compared to the control, propofol significantly inhibited the proliferation, migration, and invasion abilities of CRC cells (HCT116 and SW480) (p < 0.0001). The expression levels of NF-κB and HIF-1α gradually decreased with increasing propofol concentration in both cell lines. After activation and inhibition of NF-κB, the expression of HIF-1α changed. Further studies showed that propofol inhibited LPS-activated NF-κB-induced expression of HIF-1α, similar to the NF-κB inhibitor Bay17083 (p < 0.0001). CONCLUSION: In vitro, propofol inhibited the proliferation, migration, and invasion of CRC cells (HCT116 and SW480) in a dose-dependent manner, possibly by participating in the regulation of the NF-κB/HIF-1α signaling pathway.
Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Subunidad alfa del Factor 1 Inducible por Hipoxia , FN-kappa B , Propofol , Transducción de Señal , Propofol/farmacología , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Células Tumorales Cultivadas , Relación Estructura-Actividad , Estructura MolecularRESUMEN
Background and Aim: Xuefu Zhuyu decoction (XZD), a traditional Chinese medicinal formula, was firstly recorded in the Qing dynasty of ancient China and previously demonstrated to ameliorate hepatic steatosis. In the present study, the effects of XZD on non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD) were evaluated in mice and the hepatic transcriptome was detected to disclose the potential mechanisms of XZD. Experimental procedure: The effects of XZD (low- and high-dosage) on NAFLD induced by HFD for 16 weeks were evaluated. Obeticholic acid was used as control drug. Body weight, food intake and index of homeostatic model assessment for insulin resistance (HOMA-IR) were analyzed. Hepatic histology were observed in haematoxylin and eosin stained sections and quantified with NAFLD activity score (NAS). Lipid in hepatocytes was visualized by Oil red staining. Alanine aminotransferase (ALT) and hepatic triglyceride (TG) was measured. The hepatic transcriptom was detected with RNA-sequencing and validated with real-time polymerase chain reaction, western-blotting and hepatic quantitative metabolomics. Results: XZD ameliorated hepatic histology of NAFLD mice, accompanied with decreasing fasting insulin, HOMA-IR, NAS, ALT and hepatic TG. The hepatic transcriptom of NAFLD was significantly reversed by XZD treatment, especially the genes enriched in the pathways of arachidonic acid metabolism, fatty acid degradation, cytokine-cytokine receptor interaction and extracellular matrix (ECM) -receptor interaction. The hepatic quantitative metabolomics analysis confirmed fatty acid degradation as the key targeting pathway of XZD. Conclusions: XZD ameliorated NAFLD induced by HFD, which probably correlated closely to the pathways of fatty acid degradation.
RESUMEN
BACKGROUND: Fibroblast growth factor 21 (FGF21) analogues have emerged as promising therapeutic targets for non-alcoholic steatohepatitis (NASH). However, the effects and safety of these analogues on NASH and NASH-related fibrosis remain unexplored. AIMS: To estimate the efficacy and safety of FGF21 analogues for treating NASH and NASH-related fibrosis. METHODS: PubMed, Embase, and the Cochrane Library were searched for relevant studies up to 11 October 2023. Primary outcomes were defined as the fibrosis improvement ≥1 stage without worsening of NASH and NASH resolution without worsening fibrosis. Secondary outcomes included biomarkers of fibrosis, liver injury, and metabolism. Treatment-related adverse events were also analysed. RESULTS: Nine studies, including 1054 patients with biopsy-proven NASH and stage F1-F4 fibrosis, were identified. Seven studies reported histological outcomes. The relative risk (RR) for obtaining fibrosis improvement ≥1 stage efficacy was 1.79 (95% CI 1.29-2.48, I2 = 37%, p < 0.001) with FGF21 analogues relative to placebo. Although no statistically significant difference was observed between FGF21 analogues in NASH resolution, sensitivity analyses and fragility index suggest that this result is unstable. The drugs improved hepatic fat fraction (HFF), along with other biomarkers of fibrosis, liver injury, and metabolism (MRE, LSM, Pro-C3, ELF, ALT, AST, TG, HDL-C, and LDL-C). Additionally, no significant difference in serious adverse event incidence rate was observed (RR = 1.26, 95% CI 0.82-1.94, I2 = 24%, p = 0.3). CONCLUSIONS: FGF21 analogues appear as promising agents for the treatment of NASH and NASH-related fibrosis, and they generally seem to be safe and well tolerated.
Asunto(s)
Factores de Crecimiento de Fibroblastos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/complicaciones , BiomarcadoresRESUMEN
Introduction: Acute-on-chronic liver failure (ACLF) is a clinical syndrome with high short-term mortality. ACLF has been increasingly studied in recent years; however, a bibliometric analysis of the entire ACLF field has not been conducted. This study assesses current global trends and hotspots in ACLF research. Materials and methods: The core Web of Science database was searched for all ACLF-related publications conducted during 2012-2022. The data included information on the author, country, author keywords, publication year, citation frequency, and references. Microsoft Excel was used to collate the data and calculate percentages. VOSviewer software was used for citation and density visualization analysis. Histogram rendering was performed using GraphPad Prism Version 8.0 and R software was used to supplement the analysis. Result: A total of 1609 ACLF-related articles from 67 different countries were identified. China contributed the most literature, followed by the United States. However, Chinese literature only had the 4th highest number of citations, indicating that cooperation with other countries needs to be strengthened. The Journal of Hepatology had the highest number of ACLF-related citations. Prognosis was one of the most common author keywords, which may highlight current research hotspots. Bacterial infection was a common keyword and was closely related to prognosis. Conclusion: This bibliometric analysis suggests that future research hotspots will focus on the interplay among bacterial infection, organ failure, and prognosis.
RESUMEN
M6A is essential for tumor occurrence and progression. The expression patterns of m6A regulators differ in various kinds of tumors. Transcriptomic expression statistics together with clinical data from a database were analyzed to distinguish patients with digestive tract tumors. Based on the expression patterns of diverse m6A regulators, patients were divided into several clusters. Survival analysis suggested significant differences in patient prognosis among the m6A clusters. The results showed overlapping of m6A expression patterns with energy metabolism and nucleotide metabolism. Functional analyses imply that m6A modifications in tumor cells probably drive metabolic reprogramming to sustain rapid proliferation of cancer cells. Our analysis highlights the m6A risk characterizes various kinds of metabolic features and predicts chemotherapy sensitivity in digestive tract tumors, providing evidence for m6A regulators as markers to predict patient outcomes.
RESUMEN
INTRODUCTION: In metabolic dysfunction-associated steatotic liver disease, the diagnostic efficacy of controlled attenuation parameter (CAP) was not very accurate in evaluating liver fat content. The aim of this study was to develop a score, based on CAP and conventional clinical parameters, to improve the diagnostic performance of CAP regarding liver fat content. METHODS: A total of 373 participants from 2 independent Chinese cohorts were included and divided into derivation (n = 191), internal validation (n = 75), and external validation (n = 107) cohorts. Based on the significant difference index between the 2 groups defined by the magnetic resonance imaging-proton density fat fraction (MRI-PDFF) in derivation cohort, the optimal model (CAP-BMI-AST score [CBST]) was screened by the number of parameters and the area under the receiver operating characteristic curve (AUROC). In the internal and external validation cohorts, the AUROC and corresponding 95% confidence intervals (CIs) were used to compare the diagnostic performance of CBST with that of CAP. RESULTS: We constructed the CBST = -14.27962 + 0.05431 × CAP - 0.14266 × body mass index + 0.01715 × aspartate aminotransferase. When MRI-PDFF was ≥20%, ≥10%, and ≥5%, the AUROC for CBST was 0.77 (95% CI 0.70-0.83), 0.89 (95% CI 0.83-0.94), and 0.93 (95% CI 0.88-0.98), which was higher than that for CAP respectively. In the internal validation cohort, the AUROC for CBST was 0.80 (95% CI 0.70-0.90), 0.95 (95% CI 0.91-1.00), and 0.98 (95% CI 0.94-1.00). The optimal thresholds of CBST were -0.5345, -1.7404, and -1.9959 for detecting MRI-PDFF ≥20%, ≥10%, and ≥5%, respectively. DISCUSSION: The CBST score can accurately evaluate liver steatosis and is superior to the CAP.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Imagen por Resonancia Magnética , Curva ROCRESUMEN
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Asunto(s)
Endopeptidasas , Neoplasias , Humanos , Proliferación Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Neoplasias/genética , Ubiquitina/genética , Ubiquitina/metabolismoRESUMEN
Yolk sac-derived microglia and peripheral monocyte-derived macrophages play a key role during Parkinson's disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)-positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J-mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling.
Asunto(s)
FN-kappa B , Enfermedad de Parkinson , Animales , Ratones , Microglía , Activación de Macrófagos , Transducción de Señal , DopaminaRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/genética , Ácidos y Sales Biliares , Citoplasma , Ratones Noqueados , Ácidos GrasosRESUMEN
Acoustic black holes (ABHs) are effective at suppressing vibrations at high frequencies, but their performance at low frequencies is limited. This paper aims to improve the low-frequency performance of ABH plates through the design of a metamaterial acoustic black hole (MMABH) plate. The MMABH plate consists of a double-layer ABH plate with a set of periodic local resonators installed between the layers. The resonators are tuned to the low-frequency peak points of the ABH plate, which are identified using finite element analysis. To dissipate vibration energy, the beams of the resonators are covered with damping layers. A modal analysis of the MMABH plate is performed, confirming its damping effect over a wide frequency band, especially at low frequencies.
RESUMEN
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive disease that can progress to non-alcoholic steatohepatitis (NASH). Animal models are important tools for basic NASH research. Immune activation plays a key role in liver inflammation in patients with NASH. We established a high-trans fat, high-carbohydrate, and high-cholesterol, high-cholate diet-induced (HFHCCC) mouse model. C57BL/6 mice were fed a normal or HFHCCC diet for 24 weeks, and the immune response characteristics of this model were evaluated. The proportion of immune cells in mouse liver tissues was detected by immunohistochemistry and flow cytometry, Multiplex bead immunoassay and Luminex technology was used to detecte the expression of cytokines in mouse liver tissues. The results showed that mice treated with HFHCCC diet exhibited remarkably increased hepatic triglycerides (TG) content, and the increase in plasma transaminases resulted in hepatocyte injury. Biochemical results showed that HFHCCC induced elevated hepatic lipids, blood glucose, insulin; marked hepatocyte steatosis, ballooning, inflammation, and fibrosis. The proportion of innate immunity-related cells, including Kupffer cells (KCs), neutrophils, dendritic cells (DCs), natural killer T cells (NKT), and adaptive immunity-related CD3+ T cells increased; interleukin-1α (IL-1α), IL-1ß, IL-2, IL-6, IL-9, and chemokines, including CCL2, CCL3, and macrophage colony stimulating factor (G-CSF) increased. The constructed model closely approximated the characteristics of human NASH and evaluation of its immune response signature, showed that the innate immune response was more pronounced than adaptive immunity. Its use as an experimental tool for understanding innate immune responses in NASH is recommended.
RESUMEN
BACKGROUND: Robot-assisted distal gastrectomy (RADG) has been used in the minimally invasive surgical treatment of gastric cancer, but the research on advanced gastric cancer (AGC) after neoadjuvant chemotherapy (NAC) has not been reported. This study aimed to analyze the outcomes of RADG versus laparoscopic distal gastrectomy (LDG) after NAC for AGC. METHODS: This was a retrospective propensity score-matched analysis from February 2020 and March 2022. Patients who underwent RADG or LDG for AGC (cT3-4a/N +) following NAC were enrolled and a propensity score-matched analysis was performed in a 1:1 manner. The patients were divided into RADG group and LDG group. The clinicopathological characteristics and short-term outcomes were observed. RESULTS: After propensity score matching, 67 patients each in the RADG and LDG groups. RADG was associated with a lower intraoperative blood loss (35.6 vs. 118.8 ml, P = 0.014) and more retrieved lymph nodes (LNs) (50.7 vs. 39.5, P < 0.001), more extraperigastric (18.3 vs. 10.4, P < 0.001), and suprapancreatic LNs (16.33 vs. 13.70, P = 0.042). The RADG group showed lower VAS scores at postoperative 24 h (2.2 vs 3.3, P = 0.034), earlier ambulation (1.3 vs. 2.6, P = 0.011), aerofluxus time (2.2 vs. 3.6, P = 0.025), and shorter postoperative hospital stay (8.3 vs. 9.8, P = 0.004). There were no significant differences in the operative time (216.7 vs.194.7 min, P = 0.204) and postoperative complications between the two groups. CONCLUSION: RADG may be a potential therapeutic option for patients with AGC after NAC considering its advantages in perioperative period compared with LDG.
Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/complicaciones , Gastrectomía/efectos adversos , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Terapia Neoadyuvante/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Laparoscopía/efectos adversos , Puntaje de Propensión , Resultado del TratamientoRESUMEN
Background: Geniposide and chlorogenic acid are the major active ingredients in Yinchenhao Decoction and are widely used as herbal medicines in Asia. This study further assessed their effects on improvement of non-alcoholic steatohepatitis (NASH) in a mouse model and explored the underlying molecular events in vivo. Methods: Male C57BL/6 and farnesoid X receptor knockout (FXR-/-) mice were used to establish the NASH model and were treated with or without geniposide, chlorogenic acid, obeticholic acid (OCA), and antibiotics for assessment of the serum and tissue levels of various biochemical parameters, bile acid, DNA sequencing of bacterial 16S amplicon, protein expression, and histology. Results: The data showed that the combination of geniposide and chlorogenic acid (GC) reduced the levels of blood and liver lipids, serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), and the liver tissue index in NASH mice. In addition, GC treatment improved the intestinal microbial disorders in the NASH mice as well as the intestinal and serum bile acid metabolism. At the gene level, GC induced FXR signaling, i.e., increased the expression of FXR, small heterodimer partner (SHP), and bile salt export pump (BSEP) in liver tissues and fibroblast growth factor 15 (FGF15) expression in the ileal tissues of NASH mice. However, antibiotics (ampicillin, neomycin, vancomycin, and tinidazole) in drinking water (ADW) reversed the effect of GC on NASH and altered the gut microbiota in NASH mice in vivo. Furthermore, GC treatment failed to improve NASH in the FXR-/- mouse NASH model in vivo, indicating that the effectiveness of GC treatment might be through FXR signaling activation. Conclusion: GC was able to alleviate NASH by improving the gut microbiome and activating FXR signaling; its effect was better than each individual agent alone.
RESUMEN
BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD) has been on the rise in recent years, and there are no effective drugs to treat NAFLD; therefore, effective prevention and treatment of NAFLD have become a new challenge. Danggui Shaoyao Powder (DGSY) is a classic prescription commonly used in clinical practice and has been shown to reduce hepatic steatosis in patients with NAFLD. In addition, previous studies have shown that DGSY can alleviate hepatic steatosis and inflammation in NAFLD mice. Although clinical practice and basic studies have shown that DGSY is effective in NAFLD, high levels of clinical evidence are lacking. Therefore, a standardized RCT study protocol is required to evaluate its clinical efficacy and safety. METHODS AND ANALYSIS: This study will be a randomized, double-blind, placebo-controlled, and single-center trial. According to the random number table, NAFLD participants will be randomly divided into the DGSY or placebo group for 24 weeks. The follow-up period will be 6 weeks after drug withdrawal. The primary outcome is the relative change in MRI-proton density fat fraction (MRI-PDFF) from baseline to 24 weeks. Absolute changes in serum alanine aminotransferase (ALT), liver stiffness measurement (LSM), body mass index (BMI), blood lipid, blood glucose, and insulin resistance index will be selected as secondary outcomes to comprehensively evaluate the clinical efficacy of DGSY in the treatment of NAFLD. The safety of DGSY will be evaluated by renal function, routine blood and urine tests, and electrocardiogram. DISCUSSION: This study will provide evidence-based medical corroboration for the clinical application of DGSY and promote the development and application of this classic prescription. TRIAL REGISTRATION: http://www.chictr.org.cn . TRIAL NUMBER: ChiCTR2000029144. Registered on 15 Jan 2020.