Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1413523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220769

RESUMEN

Listeriosis is highly prevalent in the animal farming industry, with Listeria monocytogenes as the causative pathogen. To identify potential therapeutic targets for LM infection, we investigated the mechanisms of LM infection in goat uteri. We inoculated a group of goats with LM via jugular vein injection, isolated and raised them, and subsequently collected sterile samples of their uterine tissue after they exhibited clinical symptoms of LM infection. We used Giemsa staining, immunohistochemical staining, real-time qPCR, and Western blotting as experimental methods.First, we investigated the mechanism of Listeria monocytogenes (LM) infection in the goat uterus by examining the expression levels of listeriolysin O, E-cadherin, and tyrosine kinase c-Met in the uterus.Furthermore, we investigated the impact of LM infection on uterine autophagy and cell apoptosis. The results indicate that the injection of LM into the goats' jugular veins leads to LM infection in the goats' uteri. During LM survival inside the goat uterine cells, there is a significant increase in the expression levels of LLO, E-cadherin, and c-Met in the host uterine tissue. This suggests that LM may potentially infect goat uteri through the InlA/E-cadherin and InlB/c-Met pathways. Furthermore, LM infection increases the levels of apoptosis and autophagy in goat uteri. Apoptosis genes Bcl-2 and Bax, as well as autophagy-related genes LC3B, PINK1, and Parkin, exhibit varying degrees of changes in localization and expression in goat uteri, mediating the occurrence of apoptotic and autophagic responses.

2.
J Colloid Interface Sci ; 665: 181-187, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522158

RESUMEN

Carbonyl or imine-based compounds have received a great deal of attention due to their high specific capacity and designability as cathodes for aqueous rechargeable organo-aluminum batteries. However, the inherent low conductivity and high solubility of carbonyl and imine-based compounds severely affect the cycling stability of aluminum batteries. Therefore, it is urgent to find an organic cathodes material with low solubility and good cycling performance. In this work, dibenzo[a,c]dibenzo[5,6:7,8]quinoxalino[2,3-i]phenazine-10,21-dione (DDQP) were synthesized by simple dehydration condensation to form new imine covalent bonds, which led to the synthesis of imine-conjugated backbone structures with carbonyl, extended π-conjugation planes, and increased active sites, resulting in increased specific capacities. Its storage mechanism with Al(OTF)2+ has also been confirmed. This monovalent ion usually possesses a lower coulombic interaction, which leads to a reduced solubility of DDQP during redox processes and improves its cyclic stability. The specific capacity of DDQP is 252.22 mAh/g at a current density of 400 mA g-1. After cycling, the discharge specific capacity remains at 219 mAh/g. Surprisingly, the conductivity of the battery also is improved by this structure of multiple active sites. And it can be further confirmed by theoretical calculations that the synthesis of DDQP realigns the arrangement of the electron cloud, enhances the electron affinity, and reduces the energy gap. This study provides a new reference for improving the performance of aqueous organic aluminum batteries.

3.
BMC Vet Res ; 19(1): 117, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559056

RESUMEN

BACKGROUND: Introducing new goat breeds or transferring adult goats from farms to slaughterhouses requires transportation, which can engender adverse effects, such as oxidative stress, pathological cell apoptosis and autophagy. Current evidence suggests that malondialdehyde (MDA) is a metabolite of lipid peroxidation during oxidative stress, while superoxide dismutase (SOD) and catalase (CAT) can alleviate injury caused by free radicals and reactive oxygen species (ROS). Meanwhile, Bcl-2, Bax, LC3B, PINK1 and Parkin are important proteins that participate in pathological cell apoptosis and autophagy. This study aimed to investigate the effects of transportation stress on oxidative stress indexes and expressions of Bcl-2, Bax, LC3B, PINK1 and Parkin in the small intestine of goats. Twelve healthy adult male goats from western Jiangxi province were randomly divided into control, 2 h transportation stress, and 6 h transportation stress groups (n = 4 per group). RESULTS: Our results showed that MDA in the small intestine significantly increased after transportation, while SOD and CAT activities decreased, with a significantly increased apoptosis rate of the small intestine cells. The jejunum and duodenum exhibited the highest apoptosis rate in the 2 h and 6 h transportation groups, respectively. The expression of apoptosis-related genes Bcl-2 and Bax and their corresponding proteins exhibited varying degrees of down-regulation or up-regulation, while Bcl-2 and Bax genes in the small intestine were upregulated in the 6 h transportation group. In addition, autophagosomes and autophagolysosomes were found in various parts of the small intestine by transmission electron microscopy, and autophagy-related genes LC3B, PINK1 and Parkin were significantly down-regulated in the 2 h group and up-regulated in the 6 h group. CONCLUSIONS: Our results indicate that the contents of MDA, SOD and CAT in the small intestine, the expression of pathologic apoptosis-related genes Bcl-2 and Bax, and autophagy-related genes LC3B, PINK1 and Parkin correlated with stress duration caused by transportation. Moreover, this study provides a foothold for further studies on the mechanism of transportation stress in goats and improving animal welfare.


Asunto(s)
Apoptosis , Cabras , Masculino , Animales , Proteína X Asociada a bcl-2/farmacología , Cabras/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Autofagia , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Yeyuno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , Proteínas Quinasas
4.
Small Methods ; 7(10): e2300663, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37462249

RESUMEN

Aluminum ion batteries (AIBs) are widely regarded as the most potential large-scale metal ion battery because of its high safety and environment-friendly characteristics. To solve the problem of weak electrical conductivity of organic materials, different structures of cyano organic molecules with electrophilic properties are selected as the cathode materials of aluminum batteries. Through experimental characterization and density functional theory theoretical calculation, Phthalonitrile is the best cathode material among the five organic molecules and proved that the C≡N group is the active site for insertion/extraction of AlCl2 + ions. The first cycle-specific capacity of the assembled flexible package battery is as high as 191.92 mAh g-1 , the discharge-specific capacity is 112.67 mAh g-1 after 1000 cycles, and the coulombic efficiency is ≈97%. At the same time, the influences of different molecular structures and functional groups on the battery are also proved. These research results lay a foundation for selecting safe and stable organic aluminum batteries and provide a new reference for developing high-performance AIBs.

5.
Front Public Health ; 10: 938113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923964

RESUMEN

Background: Artificial intelligence has far surpassed previous related technologies in image recognition and is increasingly used in medical image analysis. We aimed to explore the diagnostic accuracy of the models based on deep learning or radiomics for lung cancer staging. Methods: Studies were systematically reviewed using literature searches from PubMed, EMBASE, Web of Science, and Wanfang Database, according to PRISMA guidelines. Studies about the diagnostic accuracy of radiomics and deep learning, including the identifications of lung cancer, tumor types, malignant lung nodules and lymph node metastase, were included. After identifying the articles, the methodological quality was assessed using the QUADAS-2 checklist. We extracted the characteristic of each study; the sensitivity, specificity, and AUROC for lung cancer diagnosis were summarized for subgroup analysis. Results: The systematic review identified 19 eligible studies, of which 14 used radiomics models and 5 used deep learning models. The pooled AUROC of 7 studies to determine whether patients had lung cancer was 0.83 (95% CI 0.78-0.88). The pooled AUROC of 9 studies to determine whether patients had NSCLC was 0.78 (95% CI 0.73-0.83). The pooled AUROC of the 6 studies that determined patients had malignant lung nodules was 0.79 (95% CI 0.77-0.82). The pooled AUROC of the other 6 studies that determined whether patients had lymph node metastases was 0.74 (95% CI 0.66-0.82). Conclusion: The models based on deep learning or radiomics have the potential to improve diagnostic accuracy for lung cancer staging. Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0167/, identifier: INPLASY202230167.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Inteligencia Artificial , Humanos , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Estadificación de Neoplasias
6.
Allergol Immunopathol (Madr) ; 50(4): 147-154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789415

RESUMEN

BACKGROUND: Pediatric asthma is an usual disease and a kind of fearful health threat for children. Airway smooth muscle cells (ASMCs) with increased cell proliferation and migration abilities serve as important features in the progression of asthma. RAB11A has been shown to aggravate cancer progression and is closely associated with inflammation. Gene analysis discovered that RAB11A exhibited higher expression in asthmatic patients. However, the detailed regulatory function of RAB11A in asthma still needs further investigation. METHOD: The mRNA and protein expressions of genes were examined through RT-qPCR and western blot. Cell proliferation was examined through MTT and BrdU assays. Cell apoptosis was tested through flow cytometry. The cell migration ability was detected through wound healing and transwell assays. The levels of TNF-α, IL-1ß, IL-8, and IL-6 were measured through ELISA. RESULT: In this study, the mRNA and protein expressions of RAB11A were increased with PDGF-BB treatment in a dose-dependent manner. Additionally, the silencing of RAB11A suppressed the proliferation ability of PDGF-BB-mediated ASMCs. Moreover, it was uncovered that the knockdown of RAB11A inhibited the migration ability of PDGF-BB-stimulated ASMCs. Besides, suppression of RAB11A relieved the inflammatory response in PDGF-BB-stimulated ASMCs. Lastly, inhibition of RAB11A retarded the NF-κB and PI3K/AKT pathways. CONCLUSION: Our results revealed that RAB11A aggravated PDGF-BB-stimulated proliferation, migration, and inflammation of ASMCs through modulating NF-κB and PI3K/AKT signaling pathways. This finding implied that the RAB11A may be deemed as a novel and prospective biomarker for asthma treatment.


Asunto(s)
Asma , FN-kappa B , Becaplermina , Proliferación Celular , Niño , Humanos , Inflamación , Miocitos del Músculo Liso , Fosfatidilinositol 3-Quinasas , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA